Proof of Theorem spliteq-P6-L1
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM1of2 193 |
. . . . 5
⊢ ((𝑎 = 𝑡 ∧ 𝑡 = 𝑢) → 𝑎 = 𝑡) |
| 2 | | eqtrns-P5.CL 631 |
. . . . 5
⊢ ((𝑎 = 𝑡 ∧ 𝑡 = 𝑢) → 𝑎 = 𝑢) |
| 3 | 1, 2 | ndandi-P3.7 172 |
. . . 4
⊢ ((𝑎 = 𝑡 ∧ 𝑡 = 𝑢) → (𝑎 = 𝑡 ∧ 𝑎 = 𝑢)) |
| 4 | | exi-P6 718 |
. . . 4
⊢ ((𝑎 = 𝑡 ∧ 𝑎 = 𝑢) →
∃𝑎(𝑎
= 𝑡 ∧ 𝑎
= 𝑢)) |
| 5 | 3, 4 | syl-P3.24.RC 260 |
. . 3
⊢ ((𝑎 = 𝑡 ∧ 𝑡 = 𝑢) →
∃𝑎(𝑎
= 𝑡 ∧ 𝑎
= 𝑢)) |
| 6 | 5 | rcp-NDIMI2 224 |
. 2
⊢ (𝑎 = 𝑡 → (𝑡 = 𝑢 →
∃𝑎(𝑎
= 𝑡 ∧ 𝑎
= 𝑢))) |
| 7 | | rcp-NDASM1of2 193 |
. . . . . 6
⊢ ((𝑎 = 𝑡 ∧ 𝑎 = 𝑢) → 𝑎 = 𝑡) |
| 8 | 7 | eqsym-P5 627 |
. . . . 5
⊢ ((𝑎 = 𝑡 ∧ 𝑎 = 𝑢) → 𝑡 = 𝑎) |
| 9 | | rcp-NDASM2of2 194 |
. . . . 5
⊢ ((𝑎 = 𝑡 ∧ 𝑎 = 𝑢) → 𝑎 = 𝑢) |
| 10 | 8, 9 | eqtrns-P5 630 |
. . . 4
⊢ ((𝑎 = 𝑡 ∧ 𝑎 = 𝑢) → 𝑡 = 𝑢) |
| 11 | 10 | exiav-P5 615 |
. . 3
⊢ (∃𝑎(𝑎 = 𝑡 ∧ 𝑎 = 𝑢) → 𝑡 = 𝑢) |
| 12 | 11 | rcp-NDIMP0addall 207 |
. 2
⊢ (𝑎 = 𝑡 →
(∃𝑎(𝑎
= 𝑡 ∧ 𝑎
= 𝑢) → 𝑡 =
𝑢)) |
| 13 | 6, 12 | ndbii-P3.13 178 |
1
⊢ (𝑎 = 𝑡 → (𝑡 = 𝑢 ↔
∃𝑎(𝑎
= 𝑡 ∧ 𝑎
= 𝑢))) |