PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  spliteq-P6-L1

Theorem spliteq-P6-L1 775
Description: Lemma for spliteq-P6-L1 775.
Assertion
Ref Expression
spliteq-P6-L1 (𝑎 = 𝑡 → (𝑡 = 𝑢 ↔ ∃𝑎(𝑎 = 𝑡𝑎 = 𝑢)))
Distinct variable groups:   𝑡,𝑎   𝑢,𝑎

Proof of Theorem spliteq-P6-L1
StepHypRef Expression
1 rcp-NDASM1of2 193 . . . . 5 ((𝑎 = 𝑡𝑡 = 𝑢) → 𝑎 = 𝑡)
2 eqtrns-P5.CL 631 . . . . 5 ((𝑎 = 𝑡𝑡 = 𝑢) → 𝑎 = 𝑢)
31, 2ndandi-P3.7 172 . . . 4 ((𝑎 = 𝑡𝑡 = 𝑢) → (𝑎 = 𝑡𝑎 = 𝑢))
4 exi-P6 718 . . . 4 ((𝑎 = 𝑡𝑎 = 𝑢) → ∃𝑎(𝑎 = 𝑡𝑎 = 𝑢))
53, 4syl-P3.24.RC 260 . . 3 ((𝑎 = 𝑡𝑡 = 𝑢) → ∃𝑎(𝑎 = 𝑡𝑎 = 𝑢))
65rcp-NDIMI2 224 . 2 (𝑎 = 𝑡 → (𝑡 = 𝑢 → ∃𝑎(𝑎 = 𝑡𝑎 = 𝑢)))
7 rcp-NDASM1of2 193 . . . . . 6 ((𝑎 = 𝑡𝑎 = 𝑢) → 𝑎 = 𝑡)
87eqsym-P5 627 . . . . 5 ((𝑎 = 𝑡𝑎 = 𝑢) → 𝑡 = 𝑎)
9 rcp-NDASM2of2 194 . . . . 5 ((𝑎 = 𝑡𝑎 = 𝑢) → 𝑎 = 𝑢)
108, 9eqtrns-P5 630 . . . 4 ((𝑎 = 𝑡𝑎 = 𝑢) → 𝑡 = 𝑢)
1110exiav-P5 615 . . 3 (∃𝑎(𝑎 = 𝑡𝑎 = 𝑢) → 𝑡 = 𝑢)
1211rcp-NDIMP0addall 207 . 2 (𝑎 = 𝑡 → (∃𝑎(𝑎 = 𝑡𝑎 = 𝑢) → 𝑡 = 𝑢))
136, 12ndbii-P3.13 178 1 (𝑎 = 𝑡 → (𝑡 = 𝑢 ↔ ∃𝑎(𝑎 = 𝑡𝑎 = 𝑢)))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-imp 10  wff-bi 104  wff-and 132  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  spliteq-P6  776
  Copyright terms: Public domain W3C validator