PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exiav-P5

Theorem exiav-P5 615
Description: Introduction of Existential Quantifier as Antecedent (variable restriction).

'𝑥' may occur in '𝜑', but not '𝜓'.

This is a weaker version of the '' elimination rule in the natural deduction system. The version with a non-freeness condition is exia-P6 746.

Hypothesis
Ref Expression
exiav-P5.1 (𝜑𝜓)
Assertion
Ref Expression
exiav-P5 (∃𝑥𝜑𝜓)
Distinct variable group:   𝜓,𝑥

Proof of Theorem exiav-P5
StepHypRef Expression
1 exiav-P5.1 . . 3 (𝜑𝜓)
21alloverimex-P5.RC.GEN 603 . 2 (∃𝑥𝜑 → ∃𝑥𝜓)
3 axL5ex-P5 613 . 2 (∃𝑥𝜓𝜓)
42, 3syl-P3.24.RC 260 1 (∃𝑥𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  exiav-P5.SH  616  exipsub-P6  720  spliteq-P6-L1  775  splitelof-P6-L1  777
  Copyright terms: Public domain W3C validator