PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  axL5ex-P5

Theorem axL5ex-P5 613
Description: Dual of ax-L5 17.

'𝑥' does not occur in '𝜑'.

Assertion
Ref Expression
axL5ex-P5 (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem axL5ex-P5
StepHypRef Expression
1 ax-L5 17 . 2 𝜑 → ∀𝑥 ¬ 𝜑)
2 lemma-L5.01a 600 . 2 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
31, 2bimpr-P4.RC 534 1 (∃𝑥𝜑𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L5 17
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  exiav-P5  615  qimeqallav-P5-L1  617  qimeqallbv-P5-L1  619  lemma-L5.02a  653  qremexv-P5  657
  Copyright terms: Public domain W3C validator