| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > lemma-L5.01a | |||
| Description: Transpositional Quantifier Equivalence Lemma. |
| Ref | Expression |
|---|---|
| lemma-L5.01a | ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-exists-D5.1 596 | . . 3 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 2 | 1 | subiml-P3.40a.RC 326 | . 2 ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ ∀𝑥 ¬ 𝜑 → 𝜑)) |
| 3 | trnspeq-P4b 536 | . 2 ⊢ ((¬ ∀𝑥 ¬ 𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
| 4 | 2, 3 | bitrns-P3.33c.RC 303 | 1 ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: axL5ex-P5 613 exgenallw-P6 680 nfrex2w-P6 695 nfrexgenw-P6 696 exgennfrw-P6 697 exgenall-P6 732 nfrexgen-P6 735 exgennfr-P6 736 exgennfrcl-L6 814 |
| Copyright terms: Public domain | W3C validator |