PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L5.01a

Theorem lemma-L5.01a 600
Description: Transpositional Quantifier Equivalence Lemma.
Assertion
Ref Expression
lemma-L5.01a ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))

Proof of Theorem lemma-L5.01a
StepHypRef Expression
1 df-exists-D5.1 596 . . 3 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
21subiml-P3.40a.RC 326 . 2 ((∃𝑥𝜑𝜑) ↔ (¬ ∀𝑥 ¬ 𝜑𝜑))
3 trnspeq-P4b 536 . 2 ((¬ ∀𝑥 ¬ 𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
42, 3bitrns-P3.33c.RC 303 1 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  axL5ex-P5  613  exgenallw-P6  680  nfrex2w-P6  695  nfrexgenw-P6  696  exgennfrw-P6  697  exgenall-P6  732  nfrexgen-P6  735  exgennfr-P6  736  exgennfrcl-L6  814
  Copyright terms: Public domain W3C validator