PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exgennfrw-P6

Theorem exgennfrw-P6 697
Description: Dual Form of gennfrw-P6 685 (weakened form).

Requires the existence of '𝜑₁(𝑥₁)' as a replacement for '𝜑(𝑥)'.

Hypotheses
Ref Expression
exgennfrw-P6.1 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
exgennfrw-P6.2 (∃𝑥𝜑𝜑)
Assertion
Ref Expression
exgennfrw-P6 𝑥𝜑
Distinct variable groups:   𝜑,𝑥₁   𝜑₁,𝑥   𝑥,𝑥₁

Proof of Theorem exgennfrw-P6
StepHypRef Expression
1 exgennfrw-P6.1 . . . 4 (𝑥 = 𝑥₁ → (𝜑𝜑₁))
21subneg-P3.39 323 . . 3 (𝑥 = 𝑥₁ → (¬ 𝜑 ↔ ¬ 𝜑₁))
3 exgennfrw-P6.2 . . . 4 (∃𝑥𝜑𝜑)
4 lemma-L5.01a 600 . . . 4 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
53, 4bimpf-P4.RC 532 . . 3 𝜑 → ∀𝑥 ¬ 𝜑)
62, 5gennfrw-P6 685 . 2 𝑥 ¬ 𝜑
7 nfrneg-P6 688 . 2 (Ⅎ𝑥 ¬ 𝜑 ↔ Ⅎ𝑥𝜑)
86, 7bimpf-P4.RC 532 1 𝑥𝜑
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator