PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subneg-P3.39

Theorem subneg-P3.39 323
Description: Substitution Law for '¬'.

Note that the proof of this theorem uses trnsp-P3.31c 285, which does not rely on the Law of Excluded Middle. This means this law is deducible with intuitionist logic.

Hypothesis
Ref Expression
subneg-P3.39.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
subneg-P3.39 (𝛾 → (¬ 𝜑 ↔ ¬ 𝜓))

Proof of Theorem subneg-P3.39
StepHypRef Expression
1 subneg-P3.39.1 . . . 4 (𝛾 → (𝜑𝜓))
21ndbier-P3.15 180 . . 3 (𝛾 → (𝜓𝜑))
32trnsp-P3.31c 285 . 2 (𝛾 → (¬ 𝜑 → ¬ 𝜓))
41ndbief-P3.14 179 . . 3 (𝛾 → (𝜑𝜓))
54trnsp-P3.31c 285 . 2 (𝛾 → (¬ 𝜓 → ¬ 𝜑))
63, 5ndbii-P3.13 178 1 (𝛾 → (¬ 𝜑 ↔ ¬ 𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161
This theorem is referenced by:  subneg-P3.39.RC  324  negbicancel-P4.11  419  negbicancelint-P4.14  424  subneg2-P4  538  exiisub-P5  655  cbvexv-P5  660  exiw-P5  662  lemma-L5.05a  668  gennallw-P6  678  gennexw-P6  679  nfrex2w-P6  695  nfrexgenw-P6  696  exgennfrw-P6  697  cbvex-P6  752
  Copyright terms: Public domain W3C validator