| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subneg-P3.39 | |||
| Description: Substitution Law for
'¬'. †
Note that the proof of this theorem uses trnsp-P3.31c 285, which does not rely on the Law of Excluded Middle. This means this law is deducible with intuitionist logic. |
| Ref | Expression |
|---|---|
| subneg-P3.39.1 | ⊢ (𝛾 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| subneg-P3.39 | ⊢ (𝛾 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subneg-P3.39.1 | . . . 4 ⊢ (𝛾 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | ndbier-P3.15 180 | . . 3 ⊢ (𝛾 → (𝜓 → 𝜑)) |
| 3 | 2 | trnsp-P3.31c 285 | . 2 ⊢ (𝛾 → (¬ 𝜑 → ¬ 𝜓)) |
| 4 | 1 | ndbief-P3.14 179 | . . 3 ⊢ (𝛾 → (𝜑 → 𝜓)) |
| 5 | 4 | trnsp-P3.31c 285 | . 2 ⊢ (𝛾 → (¬ 𝜓 → ¬ 𝜑)) |
| 6 | 3, 5 | ndbii-P3.13 178 | 1 ⊢ (𝛾 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-rcp-AND3 161 |
| This theorem is referenced by: subneg-P3.39.RC 324 negbicancel-P4.11 419 negbicancelint-P4.14 424 subneg2-P4 538 exiisub-P5 655 cbvexv-P5 660 exiw-P5 662 lemma-L5.05a 668 gennallw-P6 678 gennexw-P6 679 nfrex2w-P6 695 nfrexgenw-P6 696 exgennfrw-P6 697 cbvex-P6 752 |
| Copyright terms: Public domain | W3C validator |