| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > lemma-L5.05a | |||
| Description: A lemma for commuting
existential quantifiers.
Requires the existence of '𝜑₁(𝑥₁)' as a replacement for '𝜑(𝑥)'. |
| Ref | Expression |
|---|---|
| lemma-L5.05a.1 | ⊢ (𝑥 = 𝑥₁ → (𝜑 ↔ 𝜑₁)) |
| Ref | Expression |
|---|---|
| lemma-L5.05a | ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lemma-L5.05a.1 | . . . . 5 ⊢ (𝑥 = 𝑥₁ → (𝜑 ↔ 𝜑₁)) | |
| 2 | 1 | subneg-P3.39 323 | . . . 4 ⊢ (𝑥 = 𝑥₁ → (¬ 𝜑 ↔ ¬ 𝜑₁)) |
| 3 | 2 | lemma-L5.04a 667 | . . 3 ⊢ (∀𝑦∀𝑥 ¬ 𝜑 → ∀𝑥∀𝑦 ¬ 𝜑) |
| 4 | lemma-L5.03a 666 | . . 3 ⊢ (∀𝑦∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑦∃𝑥𝜑) | |
| 5 | lemma-L5.03a 666 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∃𝑥∃𝑦𝜑) | |
| 6 | 3, 4, 5 | subimd2-P4.RC 545 | . 2 ⊢ (¬ ∃𝑦∃𝑥𝜑 → ¬ ∃𝑥∃𝑦𝜑) |
| 7 | 6 | trnsp-P3.31d.RC 289 | 1 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: excommw-P5 670 nfrex2w-P6 695 |
| Copyright terms: Public domain | W3C validator |