PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L5.03a

Theorem lemma-L5.03a 666
Description: A Lemma for Universal / Existential Conversion of Nested Quantifiers.
Assertion
Ref Expression
lemma-L5.03a (∀𝑥𝑦 ¬ 𝜑 ↔ ¬ ∃𝑥𝑦𝜑)
Distinct variable group:   𝑥,𝑦

Proof of Theorem lemma-L5.03a
StepHypRef Expression
1 allnegex-P5 597 . . 3 (∀𝑦 ¬ 𝜑 ↔ ¬ ∃𝑦𝜑)
21suballinf-P5 594 . 2 (∀𝑥𝑦 ¬ 𝜑 ↔ ∀𝑥 ¬ ∃𝑦𝜑)
3 allnegex-P5 597 . 2 (∀𝑥 ¬ ∃𝑦𝜑 ↔ ¬ ∃𝑥𝑦𝜑)
42, 3bitrns-P3.33c.RC 303 1 (∀𝑥𝑦 ¬ 𝜑 ↔ ¬ ∃𝑥𝑦𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  lemma-L5.05a  668  excomm-P6  740
  Copyright terms: Public domain W3C validator