| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > excomm-P6 | |||
| Description: Existential Quantifier
Commutivity.
See excommw-P5 670 for a version that requires only FOL axioms. |
| Ref | Expression |
|---|---|
| excomm-P6 | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | allcomm-P6 739 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ∀𝑦∀𝑥 ¬ 𝜑) | |
| 2 | lemma-L5.03a 666 | . . 3 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 ↔ ¬ ∃𝑥∃𝑦𝜑) | |
| 3 | lemma-L5.03a 666 | . . 3 ⊢ (∀𝑦∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑦∃𝑥𝜑) | |
| 4 | 1, 2, 3 | subbid2-P4.RC 551 | . 2 ⊢ (¬ ∃𝑥∃𝑦𝜑 ↔ ¬ ∃𝑦∃𝑥𝜑) |
| 5 | 4 | negbicancel-P4.11.RC 420 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 ↔ wff-bi 104 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L11 28 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: nfrex2-P6 744 nfrex2d-P6 820 |
| Copyright terms: Public domain | W3C validator |