PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  excomm-P6

Theorem excomm-P6 740
Description: Existential Quantifier Commutivity.

See excommw-P5 670 for a version that requires only FOL axioms.

Assertion
Ref Expression
excomm-P6 (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
Distinct variable group:   𝑥,𝑦

Proof of Theorem excomm-P6
StepHypRef Expression
1 allcomm-P6 739 . . 3 (∀𝑥𝑦 ¬ 𝜑 ↔ ∀𝑦𝑥 ¬ 𝜑)
2 lemma-L5.03a 666 . . 3 (∀𝑥𝑦 ¬ 𝜑 ↔ ¬ ∃𝑥𝑦𝜑)
3 lemma-L5.03a 666 . . 3 (∀𝑦𝑥 ¬ 𝜑 ↔ ¬ ∃𝑦𝑥𝜑)
41, 2, 3subbid2-P4.RC 551 . 2 (¬ ∃𝑥𝑦𝜑 ↔ ¬ ∃𝑦𝑥𝜑)
54negbicancel-P4.11.RC 420 1 (∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-bi 104  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L11 28
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  nfrex2-P6  744  nfrex2d-P6  820
  Copyright terms: Public domain W3C validator