PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  negbicancel-P4.11.RC

Theorem negbicancel-P4.11.RC 420
Description: Inference Form of negbicancel-P4.11 419.
Hypothesis
Ref Expression
negbicancel-P4.11.RC.1 𝜑 ↔ ¬ 𝜓)
Assertion
Ref Expression
negbicancel-P4.11.RC (𝜑𝜓)

Proof of Theorem negbicancel-P4.11.RC
StepHypRef Expression
1 negbicancel-P4.11.RC.1 . . . 4 𝜑 ↔ ¬ 𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (¬ 𝜑 ↔ ¬ 𝜓))
32negbicancel-P4.11 419 . 2 (⊤ → (𝜑𝜓))
43ndtruee-P3.18 183 1 (𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  excomm-P6  740
  Copyright terms: Public domain W3C validator