PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dnegeint-P4.12

Theorem dnegeint-P4.12 421
Description: Version of Double Negative Elimination deducible with intuitionist logic.
Hypothesis
Ref Expression
dnegeint-P4.12.1 (𝛾 → ¬ ¬ ¬ 𝜑)
Assertion
Ref Expression
dnegeint-P4.12 (𝛾 → ¬ 𝜑)

Proof of Theorem dnegeint-P4.12
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 ((𝛾𝜑) → 𝜑)
21dnegi-P3.29 273 . 2 ((𝛾𝜑) → ¬ ¬ 𝜑)
3 dnegeint-P4.12.1 . . 3 (𝛾 → ¬ ¬ ¬ 𝜑)
43rcp-NDIMP1add1 208 . 2 ((𝛾𝜑) → ¬ ¬ ¬ 𝜑)
52, 4rcp-NDNEGI2 219 1 (𝛾 → ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  dnegeint-P4.12.RC  422  dnegeqint-P4.13  423
  Copyright terms: Public domain W3C validator