| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > dnegi-P3.29 | |||
| Description: Double Negation
Introduction. †
This statement does not require ndexclmid-P3.16 181, and is thus deducible with intuitionist logic. |
| Ref | Expression |
|---|---|
| dnegi-P3.29.1 | ⊢ (𝛾 → 𝜑) |
| Ref | Expression |
|---|---|
| dnegi-P3.29 | ⊢ (𝛾 → ¬ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnegi-P3.29.1 | . . 3 ⊢ (𝛾 → 𝜑) | |
| 2 | 1 | rcp-NDIMP1add1 208 | . 2 ⊢ ((𝛾 ∧ ¬ 𝜑) → 𝜑) |
| 3 | rcp-NDASM2of2 194 | . 2 ⊢ ((𝛾 ∧ ¬ 𝜑) → ¬ 𝜑) | |
| 4 | 2, 3 | rcp-NDNEGI2 219 | 1 ⊢ (𝛾 → ¬ ¬ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 |
| This theorem is referenced by: dnegi-P3.29.RC 274 dnegi-P3.29.CL 275 dnegeint-P4.12 421 |
| Copyright terms: Public domain | W3C validator |