PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dnegi-P3.29

Theorem dnegi-P3.29 273
Description: Double Negation Introduction.

This statement does not require ndexclmid-P3.16 181, and is thus deducible with intuitionist logic.

Hypothesis
Ref Expression
dnegi-P3.29.1 (𝛾𝜑)
Assertion
Ref Expression
dnegi-P3.29 (𝛾 → ¬ ¬ 𝜑)

Proof of Theorem dnegi-P3.29
StepHypRef Expression
1 dnegi-P3.29.1 . . 3 (𝛾𝜑)
21rcp-NDIMP1add1 208 . 2 ((𝛾 ∧ ¬ 𝜑) → 𝜑)
3 rcp-NDASM2of2 194 . 2 ((𝛾 ∧ ¬ 𝜑) → ¬ 𝜑)
42, 3rcp-NDNEGI2 219 1 (𝛾 → ¬ ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  dnegi-P3.29.RC  274  dnegi-P3.29.CL  275  dnegeint-P4.12  421
  Copyright terms: Public domain W3C validator