PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dnegi-P3.29.RC

Theorem dnegi-P3.29.RC 274
Description: Inference Form of dnegi-P3.29 273.
Hypothesis
Ref Expression
dnegi-P3.29.RC.1 𝜑
Assertion
Ref Expression
dnegi-P3.29.RC ¬ ¬ 𝜑

Proof of Theorem dnegi-P3.29.RC
StepHypRef Expression
1 dnegi-P3.29.RC.1 . . . 4 𝜑
21ndtruei-P3.17 182 . . 3 (⊤ → 𝜑)
32dnegi-P3.29 273 . 2 (⊤ → ¬ ¬ 𝜑)
43ndtruee-P3.18 183 1 ¬ ¬ 𝜑
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  dffalse-P3.49-L2  364
  Copyright terms: Public domain W3C validator