PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dffalse-P3.49-L2

Theorem dffalse-P3.49-L2 364
Description: Lemma for dffalse-P3.49 365.
Assertion
Ref Expression
dffalse-P3.49-L2 (¬ ⊤ → ⊥)

Proof of Theorem dffalse-P3.49-L2
StepHypRef Expression
1 true-P3.44 352 . . 3
21dnegi-P3.29.RC 274 . 2 ¬ ¬ ⊤
32ndfalsei-P3.19 184 1 (¬ ⊤ → ⊥)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-true 153  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  dffalse-P3.49  365
  Copyright terms: Public domain W3C validator