PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndfalsei-P3.19

Theorem ndfalsei-P3.19 184
Description: Natural Deduction: '' Introduction Rule.

This statement can be proved from ndasm-P3.1 166, ndimp-P3.2 167, ndimi-P3.5 170, ndnege-P3.4 169, ndtruei-P3.17 182, and ndtruee-P3.18 183. It's included to keep the pattern of having an introduction rule to go along with every elimination rule. ndtruei-P3.17 182 would normally be redundant as well, but it is needed to facilitate the contextless cases not covered by rules 1 - 15.

Hypothesis
Ref Expression
ndfalsei-P3.19.1 ¬ 𝜑
Assertion
Ref Expression
ndfalsei-P3.19 (𝜑 → ⊥)

Proof of Theorem ndfalsei-P3.19
StepHypRef Expression
1 ndasm-P3.1 166 . . . 4 ((⊤ ∧ 𝜑) → 𝜑)
2 ndfalsei-P3.19.1 . . . . . 6 ¬ 𝜑
32ndtruei-P3.17 182 . . . . 5 (⊤ → ¬ 𝜑)
43ndimp-P3.2 167 . . . 4 ((⊤ ∧ 𝜑) → ¬ 𝜑)
51, 4ndnege-P3.4 169 . . 3 ((⊤ ∧ 𝜑) → ⊥)
65ndimi-P3.5 170 . 2 (⊤ → (𝜑 → ⊥))
76ndtruee-P3.18 183 1 (𝜑 → ⊥)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-true 153  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  dffalse-P3.49-L2  364  nthmeqfalse-P4.21b  443
  Copyright terms: Public domain W3C validator