| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndnege-P3.4 | |||
| Description: Natural Deduction: '¬' Elimination Rule.
If we can deduce a contradiction within some context, then we can deduce any arbitrary WFF from that same context. |
| Ref | Expression |
|---|---|
| ndnege-P3.4.1 | ⊢ (𝛾 → 𝜑) |
| ndnege-P3.4.2 | ⊢ (𝛾 → ¬ 𝜑) |
| Ref | Expression |
|---|---|
| ndnege-P3.4 | ⊢ (𝛾 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndnege-P3.4.1 | . 2 ⊢ (𝛾 → 𝜑) | |
| 2 | ndnege-P3.4.2 | . 2 ⊢ (𝛾 → ¬ 𝜑) | |
| 3 | 1, 2 | poe-P1.11b.AC.2SH 67 | 1 ⊢ (𝛾 → 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem is referenced by: ndfalsei-P3.19 184 rcp-NDNEGE0 223 ndnege-P3.4.CL 243 dnege-P3.30 276 orasim-P3.48-L1 359 impoe-P4.4a 377 nimpoe-P4.4b 380 profeliml-P4.5a 385 profelimr-P4.5b 387 dmorgarev-L4.2 453 |
| Copyright terms: Public domain | W3C validator |