PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndnege-P3.4

Theorem ndnege-P3.4 169
Description: Natural Deduction: '¬' Elimination Rule.

If we can deduce a contradiction within some context, then we can deduce any arbitrary WFF from that same context.

Hypotheses
Ref Expression
ndnege-P3.4.1 (𝛾𝜑)
ndnege-P3.4.2 (𝛾 → ¬ 𝜑)
Assertion
Ref Expression
ndnege-P3.4 (𝛾𝜓)

Proof of Theorem ndnege-P3.4
StepHypRef Expression
1 ndnege-P3.4.1 . 2 (𝛾𝜑)
2 ndnege-P3.4.2 . 2 (𝛾 → ¬ 𝜑)
31, 2poe-P1.11b.AC.2SH 67 1 (𝛾𝜓)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  ndfalsei-P3.19  184  rcp-NDNEGE0  223  ndnege-P3.4.CL  243  dnege-P3.30  276  orasim-P3.48-L1  359  impoe-P4.4a  377  nimpoe-P4.4b  380  profeliml-P4.5a  385  profelimr-P4.5b  387  dmorgarev-L4.2  453
  Copyright terms: Public domain W3C validator