PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  impoe-P4.4a

Theorem impoe-P4.4a 377
Description: Variation of Principle of Explosion Using Implication.
Hypothesis
Ref Expression
impoe-P4.4a.1 (𝛾 → ¬ 𝜑)
Assertion
Ref Expression
impoe-P4.4a (𝛾 → (𝜑𝜓))

Proof of Theorem impoe-P4.4a
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 ((𝛾𝜑) → 𝜑)
2 impoe-P4.4a.1 . . . 4 (𝛾 → ¬ 𝜑)
32rcp-NDIMP1add1 208 . . 3 ((𝛾𝜑) → ¬ 𝜑)
41, 3ndnege-P3.4 169 . 2 ((𝛾𝜑) → 𝜓)
54rcp-NDIMI2 224 1 (𝛾 → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  impoe-P4.4a.RC  378  impoe-P4.4a.CL  379  falseie-P4.22b  445  imasor-P4.32-L2  486  biasandorint-P4.34b  492  peirce-P4.40  511  exclmid2peirce-P4.41a  512  allnegex-P7-L1  956
  Copyright terms: Public domain W3C validator