| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > peirce-P4.40 | |||
| Description: Peirce's Law.
Cannot be proven without the Law of Excluded Middle. |
| Ref | Expression |
|---|---|
| peirce-P4.40 | ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of2 194 | . 2 ⊢ ((((𝜑 → 𝜓) → 𝜑) ∧ 𝜑) → 𝜑) | |
| 2 | rcp-NDASM2of2 194 | . . . 4 ⊢ ((((𝜑 → 𝜓) → 𝜑) ∧ ¬ 𝜑) → ¬ 𝜑) | |
| 3 | 2 | impoe-P4.4a 377 | . . 3 ⊢ ((((𝜑 → 𝜓) → 𝜑) ∧ ¬ 𝜑) → (𝜑 → 𝜓)) |
| 4 | rcp-NDASM1of2 193 | . . 3 ⊢ ((((𝜑 → 𝜓) → 𝜑) ∧ ¬ 𝜑) → ((𝜑 → 𝜓) → 𝜑)) | |
| 5 | 3, 4 | ndime-P3.6 171 | . 2 ⊢ ((((𝜑 → 𝜓) → 𝜑) ∧ ¬ 𝜑) → 𝜑) |
| 6 | ndexclmid-P3.16.AC 251 | . 2 ⊢ (((𝜑 → 𝜓) → 𝜑) → (𝜑 ∨ ¬ 𝜑)) | |
| 7 | 1, 5, 6 | rcp-NDORE2 235 | 1 ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |