PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  peirce-P4.40

Theorem peirce-P4.40 511
Description: Peirce's Law.

Cannot be proven without the Law of Excluded Middle.

Assertion
Ref Expression
peirce-P4.40 (((𝜑𝜓) → 𝜑) → 𝜑)

Proof of Theorem peirce-P4.40
StepHypRef Expression
1 rcp-NDASM2of2 194 . 2 ((((𝜑𝜓) → 𝜑) ∧ 𝜑) → 𝜑)
2 rcp-NDASM2of2 194 . . . 4 ((((𝜑𝜓) → 𝜑) ∧ ¬ 𝜑) → ¬ 𝜑)
32impoe-P4.4a 377 . . 3 ((((𝜑𝜓) → 𝜑) ∧ ¬ 𝜑) → (𝜑𝜓))
4 rcp-NDASM1of2 193 . . 3 ((((𝜑𝜓) → 𝜑) ∧ ¬ 𝜑) → ((𝜑𝜓) → 𝜑))
53, 4ndime-P3.6 171 . 2 ((((𝜑𝜓) → 𝜑) ∧ ¬ 𝜑) → 𝜑)
6 ndexclmid-P3.16.AC 251 . 2 (((𝜑𝜓) → 𝜑) → (𝜑 ∨ ¬ 𝜑))
71, 5, 6rcp-NDORE2 235 1 (((𝜑𝜓) → 𝜑) → 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator