| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndexclmid-P3.16.AC | |||
| Description: Alternate Form of Excluded Middle. |
| Ref | Expression |
|---|---|
| ndexclmid-P3.16.AC | ⊢ (𝛾 → (𝜑 ∨ ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndexclmid-P3.16 181 | . 2 ⊢ (𝜑 ∨ ¬ 𝜑) | |
| 2 | 1 | rcp-NDIMP0addall 207 | 1 ⊢ (𝛾 → (𝜑 ∨ ¬ 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 |
| This theorem is referenced by: dnege-P3.30 276 orasim-P3.48-L2 360 sepimorr-P4.9c 412 sepimandl-P4.9d 415 oroverim-P4.28-L2 466 imasor-P4.32-L1 485 peirce-P4.40 511 qimeqex-P7-L1 1054 |
| Copyright terms: Public domain | W3C validator |