PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndexclmid-P3.16.AC

Theorem ndexclmid-P3.16.AC 251
Description: Alternate Form of Excluded Middle.
Assertion
Ref Expression
ndexclmid-P3.16.AC (𝛾 → (𝜑 ∨ ¬ 𝜑))

Proof of Theorem ndexclmid-P3.16.AC
StepHypRef Expression
1 ndexclmid-P3.16 181 . 2 (𝜑 ∨ ¬ 𝜑)
21rcp-NDIMP0addall 207 1 (𝛾 → (𝜑 ∨ ¬ 𝜑))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  dnege-P3.30  276  orasim-P3.48-L2  360  sepimorr-P4.9c  412  sepimandl-P4.9d  415  oroverim-P4.28-L2  466  imasor-P4.32-L1  485  peirce-P4.40  511  qimeqex-P7-L1  1054
  Copyright terms: Public domain W3C validator