PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  orasim-P3.48-L2

Theorem orasim-P3.48-L2 360
Description: Lemma for orasim-P3.48a 361.
Assertion
Ref Expression
orasim-P3.48-L2 ((¬ 𝜑𝜓) → (𝜑𝜓))

Proof of Theorem orasim-P3.48-L2
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 (((¬ 𝜑𝜓) ∧ 𝜑) → 𝜑)
21ndorir-P3.11 176 . 2 (((¬ 𝜑𝜓) ∧ 𝜑) → (𝜑𝜓))
3 rcp-NDASM2of2 194 . . . 4 (((¬ 𝜑𝜓) ∧ ¬ 𝜑) → ¬ 𝜑)
4 rcp-NDASM1of2 193 . . . 4 (((¬ 𝜑𝜓) ∧ ¬ 𝜑) → (¬ 𝜑𝜓))
53, 4ndime-P3.6 171 . . 3 (((¬ 𝜑𝜓) ∧ ¬ 𝜑) → 𝜓)
65ndoril-P3.10 175 . 2 (((¬ 𝜑𝜓) ∧ ¬ 𝜑) → (𝜑𝜓))
7 ndexclmid-P3.16.AC 251 . 2 ((¬ 𝜑𝜓) → (𝜑 ∨ ¬ 𝜑))
82, 6, 7rcp-NDORE2 235 1 ((¬ 𝜑𝜓) → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  orasim-P3.48a  361
  Copyright terms: Public domain W3C validator