| bfol.mm
Proof Explorer Theorem List (p. 4 of 12) |
< Previous Next >
|
|
Mirrors > Metamath Home Page > PE Home Page > Theorem List Contents This page: Page List | |||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | bisym-P3.33b.CL.SYM 301 | Closed Symmetric Form of bisym-P3.33b 298. † |
| ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) | ||
| Theorem | bitrns-P3.33c 302 | Equivalence Property: '↔' Transitivity. † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) & ⊢ (𝛾 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝛾 → (𝜑 ↔ 𝜒)) | ||
| Theorem | bitrns-P3.33c.RC 303 | Inference Form of bitrns-P3.33c 302. † |
| ⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜓 ↔ 𝜒) ⇒ ⊢ (𝜑 ↔ 𝜒) | ||
| Theorem | bitrns-P3.33c.CL 304 | Closed Form of bitrns-P3.33c 302. |
| ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜓 ↔ 𝜒)) → (𝜑 ↔ 𝜒)) | ||
These two laws can be thought of as justification theorems for treating a sequent of the form... 1.) '𝛾₁, 𝛾₂, ... , 𝛾n ⊢ 𝜑' as identical to the WFF statement... 2.) '⊢ ((... ((𝛾₁ ∧ 𝛾₂) ∧ 𝛾₃) ∧... 𝛾n ) → 𝜑). To obtain 2.) from 1.), first repeatedly apply ndimi-P3.5 170 to obtain a nested implication. To obtain a nested conjunction we then apply import-P3.34a.RC 306 repeatedly. To obtain 1.) from 2.), first apply export-P3.34b.RC 308 repeatedly to obtain a nested implication. From there, use a combination of ndasm-P3.1 166, ndimp-P3.2 167, and ndime-P3.6 171 repeatedly to build the sequent back up. The trivial case, '𝜑 ⊢ 𝜓 ⇔ ⊢ (𝜑 → 𝜓), cannot be replicated formally in metamath, but it is similarly justified using versions of ndasm-P3.1 166, ndimp-P3.2 167, ndimi-P3.5 170, and ndime-P3.6 171 with an empty context. | ||
| Theorem | import-P3.34a 305 | '∧' Importation Law. † |
| ⊢ (𝛾 → (𝜑 → (𝜓 → 𝜒))) ⇒ ⊢ (𝛾 → ((𝜑 ∧ 𝜓) → 𝜒)) | ||
| Theorem | import-P3.34a.RC 306 | Inference Form of import-P3.34a 305. † |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | export-P3.34b 307 | '∧' Exportation Law. † |
| ⊢ (𝛾 → ((𝜑 ∧ 𝜓) → 𝜒)) ⇒ ⊢ (𝛾 → (𝜑 → (𝜓 → 𝜒))) | ||
| Theorem | export-P3.34b.RC 308 | Inference Form of export-P3.34b 307. † |
| ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → (𝜓 → 𝜒)) | ||
| Theorem | example-E3.1a 309 | Convert Sequent to Nested Implication. † |
| ⊢ ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃ ∧ 𝜑₄ ∧ 𝜑₅) → 𝜓) ⇒ ⊢ (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅ → 𝜓))))) | ||
| Theorem | example-E3.1b 310 | Convert Nested Implication to Nested Conjunction. † |
| ⊢ (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅ → 𝜓))))) ⇒ ⊢ (((((𝜑₁ ∧ 𝜑₂) ∧ 𝜑₃) ∧ 𝜑₄) ∧ 𝜑₅) → 𝜓) | ||
| Theorem | example-E3.2a 311 | Convert Nested Conjunction to Nested Implication. † |
| ⊢ (((((𝜑₁ ∧ 𝜑₂) ∧ 𝜑₃) ∧ 𝜑₄) ∧ 𝜑₅) → 𝜓) ⇒ ⊢ (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅ → 𝜓))))) | ||
| Theorem | example-E3.2b 312 | Convert Nested Implication to Sequent. † |
| ⊢ (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅ → 𝜓))))) ⇒ ⊢ ((𝜑₁ ∧ 𝜑₂ ∧ 𝜑₃ ∧ 𝜑₄ ∧ 𝜑₅) → 𝜓) | ||
| Theorem | andcomm-P3.35-L1 313 | Lemma for andcomm-P3.35 314. † [Auxiliary lemma - not displayed.] |
| Theorem | andcomm-P3.35 314 | '∧' Commutativity. † |
| ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | ||
| Theorem | andassoc-P3.36-L1 315 | Lemma for andassoc-P3.36 317. † [Auxiliary lemma - not displayed.] |
| Theorem | andassoc-P3.36-L2 316 | Lemma for andassoc-P3.36 317. † [Auxiliary lemma - not displayed.] |
| Theorem | andassoc-P3.36 317 | '∧' Associativity. † |
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | ||
| Theorem | orcomm-P3.37-L1 318 | Lemma for orcomm-P3.37 319. † [Auxiliary lemma - not displayed.] |
| Theorem | orcomm-P3.37 319 | '∨' Commutativity. † |
| ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | ||
| Theorem | orassoc-P3.38-L1 320 | Lemma for orassoc-P3.38 322. † [Auxiliary lemma - not displayed.] |
| Theorem | orassoc-P3.38-L2 321 | Lemma for orassoc-P3.38 322. † [Auxiliary lemma - not displayed.] |
| Theorem | orassoc-P3.38 322 | '∨' Associativity. † |
| ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | ||
These laws can be chained together to produce a countably infinite set of rules of the form... ((𝜑 ↔ 𝜓) → (𝜗 ↔ 𝜗(𝜓/𝜑)), where '𝜗' involves some combination of connectives '¬', '→', '∧', '∨', and '↔' and and contains the sub-formula '𝜑'. The notation '𝜗(𝜓/𝜑)' indicates the formula '𝜗' with one or more instances of the sub-formula '𝜑' replaced with '𝜓'. This idea will be expanded to formulas with quantifiers after developing the rules of predicate calculus. In this section we give proofs that do not use the Chapter 2 definitions of '↔', '∧', and '∨'. Those definitions, involving negation, are not valid in the intuitionist framework. | ||
| Theorem | subneg-P3.39 323 |
Substitution Law for '¬'. †
Note that the proof of this theorem uses trnsp-P3.31c 285, which does not rely on the Law of Excluded Middle. This means this law is deducible with intuitionist logic. |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → (¬ 𝜑 ↔ ¬ 𝜓)) | ||
| Theorem | subneg-P3.39.RC 324 | Inference Form of subneg-P3.39 323. † |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (¬ 𝜑 ↔ ¬ 𝜓) | ||
| Theorem | subiml-P3.40a 325 | Left Substitution Law for '→'. † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) | ||
| Theorem | subiml-P3.40a.RC 326 | Inference Form of subiml-P3.40a 325. † |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) | ||
| Theorem | subimr-P3.40b 327 | Right Substitution Theorem for '→'. † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) | ||
| Theorem | subimr-P3.40b.RC 328 | Inference Form of subimr-P3.40b 327. † |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) | ||
| Theorem | subimd-P3.40c 329 | Dual Substitution Law for '→'. † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) & ⊢ (𝛾 → (𝜒 ↔ 𝜗)) ⇒ ⊢ (𝛾 → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜗))) | ||
| Theorem | subimd-P3.40c.RC 330 | Inference Form of subimd-P3.40c 329. † |
| ⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜗) ⇒ ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜗)) | ||
| Theorem | subbil-P3.41a-L1 331 | Lemma for subbil-P3.41a 332. † [Auxiliary lemma - not displayed.] |
| Theorem | subbil-P3.41a 332 | Left Substitution Law for '↔'. † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒))) | ||
| Theorem | subbil-P3.41a.RC 333 | Inference Form of subbil-P3.41a 332. † |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) | ||
| Theorem | subbir-P3.41b 334 | Right Substitution Law for '↔'. † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓))) | ||
| Theorem | subbir-P3.41b.RC 335 | Inference Form of subbir-P3.41b 334. † |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) | ||
| Theorem | subbid-P3.41c 336 | Dual Substitution Law for '↔'. † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) & ⊢ (𝛾 → (𝜒 ↔ 𝜗)) ⇒ ⊢ (𝛾 → ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜗))) | ||
| Theorem | subbid-P3.41c.RC 337 | Inference Form of subbid-P3.41c 336. † |
| ⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜗) ⇒ ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜗)) | ||
| Theorem | subandl-P3.42a-L1 338 | Lemma for subandl-P3.42a 339. † [Auxiliary lemma - not displayed.] |
| Theorem | subandl-P3.42a 339 | Left Substitution Law for '∧'. † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒))) | ||
| Theorem | subandl-P3.42a.RC 340 | Inference Form of subandl-P3.42a 339. † |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) | ||
| Theorem | subandr-P3.42b 341 | Right Substitution Law for '∧'. † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → ((𝜒 ∧ 𝜑) ↔ (𝜒 ∧ 𝜓))) | ||
| Theorem | subandr-P3.42b.RC 342 | Inference Form of subandr-P3.42b 341. † |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜒 ∧ 𝜓)) | ||
| Theorem | subandd-P3.42c 343 | Dual Substitution Law for '∧'. † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) & ⊢ (𝛾 → (𝜒 ↔ 𝜗)) ⇒ ⊢ (𝛾 → ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜗))) | ||
| Theorem | subandd-P3.42c.RC 344 | Inference Form of subandd-P3.42c 343. † |
| ⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜗) ⇒ ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜗)) | ||
| Theorem | suborl-P3.43a-L1 345 | Lemma for suborl-P3.43a 346. † [Auxiliary lemma - not displayed.] |
| Theorem | suborl-P3.43a 346 | Left Substitution Theorem for '∨' . † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒))) | ||
| Theorem | suborl-P3.43a.RC 347 | Inference Form of suborl-P3.43a 346. † |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) | ||
| Theorem | suborr-P3.43b 348 | Right Substitution Law for '∨' . † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝛾 → ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓))) | ||
| Theorem | suborr-P3.43b.RC 349 | Inference Form of suborr-P3.43b 348. |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) | ||
| Theorem | subord-P3.43c 350 | Dual Substitution Theorem for '∨' . † |
| ⊢ (𝛾 → (𝜑 ↔ 𝜓)) & ⊢ (𝛾 → (𝜒 ↔ 𝜗)) ⇒ ⊢ (𝛾 → ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜗))) | ||
| Theorem | subord-P3.43c.RC 351 | Inference Form of subord-P3.43c 350. † |
| ⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜗) ⇒ ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜗)) | ||
| Theorem | true-P3.44 352 | '⊤' is a theorem. † |
| ⊢ ⊤ | ||
| Theorem | false-P3.45 353 | '⊥' is refutable. † |
| ⊢ ¬ ⊥ | ||
In intuitionist logic, conjunction ('∧') and disjunction ('∨') are both a stronger notion than they are in the classical case. In intuitionist logic we have... '((𝜑 ∧ 𝜓) → ¬ (𝜑 → ¬ 𝜓))' and '((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓))', but not... '(¬ (𝜑 → ¬ 𝜓) → (𝜑 ∧ 𝜓))' or '((¬ 𝜑 → 𝜓) → (𝜑 ∨ 𝜓))'. The biconditional relationship '(𝜑 ↔ 𝜓)' is also stronger in the intuitionist case as it can be writter in terms of conjunction as... '((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)))' which can be expanded to... '(((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))). In intuitionist logic, andasimint-P3.46b 357 allows the '∧' symbol within the left conjunct to be replaced with the primitive Hilbert definition. The same cannot be done with the right conjunct as we would need the "sufficient condition" (or "only if") part of the Hilbert definition, which is not intuitionally valid. | ||
| Theorem | andasim-P3.46-L1 354 | Lemma for andasim-P3.46a 356 and andasimint-P3.46b 357. † [Auxiliary lemma - not displayed.] |
| Theorem | andasim-P3.46-L2 355 | Lemma for andasim-P3.46a 356. [Auxiliary lemma - not displayed.] |
| Theorem | andasim-P3.46a 356 |
'∧' in Terms of '→'.
This is the re-derived Chapter 2 definition. Only andasimint-P3.46b 357 is deducible with intuitionist logic. |
| ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | ||
| Theorem | andasimint-P3.46b 357 |
Necessary Condition for (i.e. "If" part of) '∧' Defined in Terms of
'→' and '¬'.
†
Only this direction is deducible with intuitionist logic. |
| ⊢ ((𝜑 ∧ 𝜓) → ¬ (𝜑 → ¬ 𝜓)) | ||
| Theorem | dfbi-P3.47 358 |
Alternate Definition of '↔'. †
The Chapter 2 definition of '↔' comes immediately from combining this definition with the previous definition of '∧'. That definition really isn't useful enough to state though. |
| ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | ||
| Theorem | orasim-P3.48-L1 359 | Lemma for orasim-P3.48a 361 and orasimint-P3.48b 362. † [Auxiliary lemma - not displayed.] |
| Theorem | orasim-P3.48-L2 360 | Lemma for orasim-P3.48a 361. [Auxiliary lemma - not displayed.] |
| Theorem | orasim-P3.48a 361 |
'∨' in Terms of '→'.
This is the re-derived Chapter 2 definition. Only orasimint-P3.48b 362 is deducible with intuitionist logic. |
| ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | ||
| Theorem | orasimint-P3.48b 362 |
Necessary Condition for (i.e. "If" part of) '∨' Defined in Terms of
'→' and '¬'.
†
Only this direction is deducible with intuitionist logic. |
| ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | ||
| Theorem | dffalse-P3.49-L1 363 | Lemma for dffalse-P3.49 365. † [Auxiliary lemma - not displayed.] |
| Theorem | dffalse-P3.49-L2 364 | Lemma for dffalse-P3.49 365. † [Auxiliary lemma - not displayed.] |
| Theorem | dffalse-P3.49 365 | Re-derived Chapter 2 '⊥' definition. † |
| ⊢ (⊥ ↔ ¬ ⊤) | ||
| Theorem | ncontra-P4.1 366 | Law of Non-contradiction. † |
| ⊢ ¬ (𝜑 ∧ ¬ 𝜑) | ||
| Theorem | norel-P4.2a 367 | Negated Left '∨' Elimination. † |
| ⊢ (𝛾 → ¬ (𝜑 ∨ 𝜓)) ⇒ ⊢ (𝛾 → ¬ 𝜓) | ||
| Theorem | norel-P4.2a.RC 368 | Inference Form of norel-P4.2a 367. † |
| ⊢ ¬ (𝜑 ∨ 𝜓) ⇒ ⊢ ¬ 𝜓 | ||
| Theorem | norel-P4.2a.CL 369 | Closed Form of norel-P4.2a 367. † |
| ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜓) | ||
| Theorem | norer-P4.2b 370 | Negated Right '∨' Elimination. † |
| ⊢ (𝛾 → ¬ (𝜑 ∨ 𝜓)) ⇒ ⊢ (𝛾 → ¬ 𝜑) | ||
| Theorem | norer-P4.2b.RC 371 | Inference Form of norer-P4.2b 370. † |
| ⊢ ¬ (𝜑 ∨ 𝜓) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | norer-P4.2b.CL 372 | Closed Form of norer-P4.2b 370. † |
| ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜑) | ||
| Theorem | nandil-P4.3a 373 | Negated Left '∧' Introduction. † |
| ⊢ (𝛾 → ¬ 𝜑) ⇒ ⊢ (𝛾 → ¬ (𝜓 ∧ 𝜑)) | ||
| Theorem | nandil-P4.3a.RC 374 | Inference Form of nandil-P4.3a 373. † |
| ⊢ ¬ 𝜑 ⇒ ⊢ ¬ (𝜓 ∧ 𝜑) | ||
| Theorem | nandir-P4.3b 375 | Negated Right '∧' Introduction. † |
| ⊢ (𝛾 → ¬ 𝜑) ⇒ ⊢ (𝛾 → ¬ (𝜑 ∧ 𝜓)) | ||
| Theorem | nandir-P4.3b.RC 376 | Inference Form of nandir-P4.3b 375. † |
| ⊢ ¬ 𝜑 ⇒ ⊢ ¬ (𝜑 ∧ 𝜓) | ||
| Theorem | impoe-P4.4a 377 | Variation of Principle of Explosion Using Implication. † |
| ⊢ (𝛾 → ¬ 𝜑) ⇒ ⊢ (𝛾 → (𝜑 → 𝜓)) | ||
| Theorem | impoe-P4.4a.RC 378 | Inference Form of impoe-P4.4a 377. † |
| ⊢ ¬ 𝜑 ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | impoe-P4.4a.CL 379 | Closed Form of impoe-P4.4a 377. † |
| ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | ||
| Theorem | nimpoe-P4.4b 380 | Variation of Principle of Explosion Using Implication (negated form). † |
| ⊢ (𝛾 → 𝜑) ⇒ ⊢ (𝛾 → (¬ 𝜑 → 𝜓)) | ||
| Theorem | nimpoe-P4.4b.RC 381 | Inference Form of nimpoe-P4.4b 380. † |
| ⊢ 𝜑 ⇒ ⊢ (¬ 𝜑 → 𝜓) | ||
| Theorem | nimpoe-P4.4b.CL 382 | Closed Form of nimpoe-P4.4b 380. † |
| ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) | ||
| Theorem | falseimpoe-P4.4c 383 | Principle of Explosion Utilising '⊥'. † |
| ⊢ (𝛾 → ⊥) ⇒ ⊢ (𝛾 → 𝜑) | ||
| Theorem | falseimpoe-P4.4c.RC 384 |
Inference Form of falseimpoe-P4.4c 383. †
In an inconsistent system, every wff is a theorem. |
| ⊢ ⊥ ⇒ ⊢ 𝜑 | ||
| Theorem | profeliml-P4.5a 385 | Process of Elimination (left). † |
| ⊢ (𝛾 → (𝜑 ∨ 𝜓)) & ⊢ (𝛾 → ¬ 𝜑) ⇒ ⊢ (𝛾 → 𝜓) | ||
| Theorem | profeliml-P4.5a.RC 386 | Inference Form of profeliml-P4.5a 385. † |
| ⊢ (𝜑 ∨ 𝜓) & ⊢ ¬ 𝜑 ⇒ ⊢ 𝜓 | ||
| Theorem | profelimr-P4.5b 387 | Process of Elimination (right). † |
| ⊢ (𝛾 → (𝜑 ∨ 𝜓)) & ⊢ (𝛾 → ¬ 𝜓) ⇒ ⊢ (𝛾 → 𝜑) | ||
| Theorem | profelimr-P4.5b.RC 388 | Inference Form of profelimr-P4.5b 387. † |
| ⊢ (𝜑 ∨ 𝜓) & ⊢ ¬ 𝜓 ⇒ ⊢ 𝜑 | ||
| Theorem | nprofeliml-P4.6a 389 | Negated Process of Elimination (left). † |
| ⊢ (𝛾 → ¬ (𝜑 ∧ 𝜓)) & ⊢ (𝛾 → 𝜑) ⇒ ⊢ (𝛾 → ¬ 𝜓) | ||
| Theorem | nprofeliml-P4.6a.RC 390 | Inference Form of nprofeliml-P4.6a 389. † |
| ⊢ ¬ (𝜑 ∧ 𝜓) & ⊢ 𝜑 ⇒ ⊢ ¬ 𝜓 | ||
| Theorem | nprofelimr-P4.6b 391 | Negated Process of Elimination (right). † |
| ⊢ (𝛾 → ¬ (𝜑 ∧ 𝜓)) & ⊢ (𝛾 → 𝜓) ⇒ ⊢ (𝛾 → ¬ 𝜑) | ||
| Theorem | nprofelimr-P4.6b.RC 392 | Inference Form of nprofelimr-P4.6b 391. † |
| ⊢ ¬ (𝜑 ∧ 𝜓) & ⊢ 𝜓 ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | falseprofeliml-P4.7a 393 | Process of Elimination Utilising '⊥' (left). † |
| ⊢ (𝛾 → (𝜑 ∨ 𝜓)) & ⊢ (𝛾 → (𝜑 → ⊥)) ⇒ ⊢ (𝛾 → 𝜓) | ||
| Theorem | falseprofeliml-P4.7a.RC 394 | Inference Form of falseprofeliml-P4.7a 393. † |
| ⊢ (𝜑 ∨ 𝜓) & ⊢ (𝜑 → ⊥) ⇒ ⊢ 𝜓 | ||
| Theorem | falseprofelimr-P4.7b 395 | Process of Elimination Utilizing '⊥' (right). † |
| ⊢ (𝛾 → (𝜑 ∨ 𝜓)) & ⊢ (𝛾 → (𝜓 → ⊥)) ⇒ ⊢ (𝛾 → 𝜑) | ||
| Theorem | falseprofelimr-P4.7b.RC 396 | Inference Form of falseprofelimr-P4.7b 395. † |
| ⊢ (𝜑 ∨ 𝜓) & ⊢ (𝜓 → ⊥) ⇒ ⊢ 𝜑 | ||
| Theorem | joinimandinc-P4.8a 397 | Join Two Implications Through Conjunction (Inclusive). † |
| ⊢ (𝛾 → ((𝜑 → 𝜓) ∧ (𝜒 → 𝜗))) ⇒ ⊢ (𝛾 → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜗))) | ||
| Theorem | joinimandinc-P4.8a.RC 398 | Inference Form of joinimandinc-P4.8a 397. † |
| ⊢ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜗)) ⇒ ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜗)) | ||
| Theorem | joinimandinc-P4.8a.CL 399 | Closed Form of joinimandinc-P4.8a 397. † |
| ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜗)) → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜗))) | ||
| Theorem | joinimandres-P4.8b 400 | Join Two Implications Through Conjunction (Restrictive). † |
| ⊢ (𝛾 → ((𝜑 → 𝜓) ∧ (𝜒 → 𝜗))) ⇒ ⊢ (𝛾 → ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜗))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |