HomeHome bfol.mm Proof Explorer
Theorem List (p. 4 of 12)
< Previous  Next >

Mirrors  >  Metamath Home Page  >  PE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for bfol.mm Proof Explorer - 301-400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembisym-P3.33b.CL.SYM 301 Closed Symmetric Form of bisym-P3.33b 298.
((𝜑𝜓) ↔ (𝜓𝜑))
 
Theorembitrns-P3.33c 302 Equivalence Property: '' Transitivity.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜓𝜒))       (𝛾 → (𝜑𝜒))
 
Theorembitrns-P3.33c.RC 303 Inference Form of bitrns-P3.33c 302.
(𝜑𝜓)    &   (𝜓𝜒)       (𝜑𝜒)
 
Theorembitrns-P3.33c.CL 304 Closed Form of bitrns-P3.33c 302.
(((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜑𝜒))
 
4.4.2  Importation and Exportation Laws.

These two laws can be thought of as justification theorems for treating a sequent of the form...

1.) '𝛾₁, 𝛾₂, ... , 𝛾n 𝜑'

as identical to the WFF statement...

2.) '((... ((𝛾₁𝛾₂) ∧ 𝛾₃) ∧... 𝛾n ) → 𝜑).

To obtain 2.) from 1.), first repeatedly apply ndimi-P3.5 170 to obtain a nested implication. To obtain a nested conjunction we then apply import-P3.34a.RC 306 repeatedly.

To obtain 1.) from 2.), first apply export-P3.34b.RC 308 repeatedly to obtain a nested implication. From there, use a combination of ndasm-P3.1 166, ndimp-P3.2 167, and ndime-P3.6 171 repeatedly to build the sequent back up.

The trivial case, '𝜑 𝜓 (𝜑𝜓), cannot be replicated formally in metamath, but it is similarly justified using versions of ndasm-P3.1 166, ndimp-P3.2 167, ndimi-P3.5 170, and ndime-P3.6 171 with an empty context.

 
Theoremimport-P3.34a 305 '' Importation Law.
(𝛾 → (𝜑 → (𝜓𝜒)))       (𝛾 → ((𝜑𝜓) → 𝜒))
 
Theoremimport-P3.34a.RC 306 Inference Form of import-P3.34a 305.
(𝜑 → (𝜓𝜒))       ((𝜑𝜓) → 𝜒)
 
Theoremexport-P3.34b 307 '' Exportation Law.
(𝛾 → ((𝜑𝜓) → 𝜒))       (𝛾 → (𝜑 → (𝜓𝜒)))
 
Theoremexport-P3.34b.RC 308 Inference Form of export-P3.34b 307.
((𝜑𝜓) → 𝜒)       (𝜑 → (𝜓𝜒))
 
4.4.2.1  Examples.
 
Theoremexample-E3.1a 309 Convert Sequent to Nested Implication.
((𝜑₁𝜑₂𝜑₃𝜑₄𝜑₅) → 𝜓)       (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓)))))
 
Theoremexample-E3.1b 310 Convert Nested Implication to Nested Conjunction.
(𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓)))))       (((((𝜑₁𝜑₂) ∧ 𝜑₃) ∧ 𝜑₄) ∧ 𝜑₅) → 𝜓)
 
Theoremexample-E3.2a 311 Convert Nested Conjunction to Nested Implication.
(((((𝜑₁𝜑₂) ∧ 𝜑₃) ∧ 𝜑₄) ∧ 𝜑₅) → 𝜓)       (𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓)))))
 
Theoremexample-E3.2b 312 Convert Nested Implication to Sequent.
(𝜑₁ → (𝜑₂ → (𝜑₃ → (𝜑₄ → (𝜑₅𝜓)))))       ((𝜑₁𝜑₂𝜑₃𝜑₄𝜑₅) → 𝜓)
 
4.4.3  Commutative and Associative Properties.
 
Theoremandcomm-P3.35-L1 313 Lemma for andcomm-P3.35 314. [Auxiliary lemma - not displayed.]
 
Theoremandcomm-P3.35 314 '' Commutativity.
((𝜑𝜓) ↔ (𝜓𝜑))
 
Theoremandassoc-P3.36-L1 315 Lemma for andassoc-P3.36 317. [Auxiliary lemma - not displayed.]
 
Theoremandassoc-P3.36-L2 316 Lemma for andassoc-P3.36 317. [Auxiliary lemma - not displayed.]
 
Theoremandassoc-P3.36 317 '' Associativity.
(((𝜑𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
 
Theoremorcomm-P3.37-L1 318 Lemma for orcomm-P3.37 319. [Auxiliary lemma - not displayed.]
 
Theoremorcomm-P3.37 319 '' Commutativity.
((𝜑𝜓) ↔ (𝜓𝜑))
 
Theoremorassoc-P3.38-L1 320 Lemma for orassoc-P3.38 322. [Auxiliary lemma - not displayed.]
 
Theoremorassoc-P3.38-L2 321 Lemma for orassoc-P3.38 322. [Auxiliary lemma - not displayed.]
 
Theoremorassoc-P3.38 322 '' Associativity.
(((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
 
4.4.4  Substitution Laws.

These laws can be chained together to produce a countably infinite set of rules of the form...

((𝜑𝜓) → (𝜗𝜗(𝜓/𝜑)),

where '𝜗' involves some combination of connectives '¬', '', '', '', and '' and and contains the sub-formula '𝜑'. The notation '𝜗(𝜓/𝜑)' indicates the formula '𝜗' with one or more instances of the sub-formula '𝜑' replaced with '𝜓'.

This idea will be expanded to formulas with quantifiers after developing the rules of predicate calculus.

In this section we give proofs that do not use the Chapter 2 definitions of '', '', and ''. Those definitions, involving negation, are not valid in the intuitionist framework.

 
Theoremsubneg-P3.39 323 Substitution Law for '¬'.

Note that the proof of this theorem uses trnsp-P3.31c 285, which does not rely on the Law of Excluded Middle. This means this law is deducible with intuitionist logic.

(𝛾 → (𝜑𝜓))       (𝛾 → (¬ 𝜑 ↔ ¬ 𝜓))
 
Theoremsubneg-P3.39.RC 324 Inference Form of subneg-P3.39 323.
(𝜑𝜓)       𝜑 ↔ ¬ 𝜓)
 
Theoremsubiml-P3.40a 325 Left Substitution Law for ''.
(𝛾 → (𝜑𝜓))       (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))
 
Theoremsubiml-P3.40a.RC 326 Inference Form of subiml-P3.40a 325.
(𝜑𝜓)       ((𝜑𝜒) ↔ (𝜓𝜒))
 
Theoremsubimr-P3.40b 327 Right Substitution Theorem for ''.
(𝛾 → (𝜑𝜓))       (𝛾 → ((𝜒𝜑) ↔ (𝜒𝜓)))
 
Theoremsubimr-P3.40b.RC 328 Inference Form of subimr-P3.40b 327.
(𝜑𝜓)       ((𝜒𝜑) ↔ (𝜒𝜓))
 
Theoremsubimd-P3.40c 329 Dual Substitution Law for ''.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜒𝜗))       (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜗)))
 
Theoremsubimd-P3.40c.RC 330 Inference Form of subimd-P3.40c 329.
(𝜑𝜓)    &   (𝜒𝜗)       ((𝜑𝜒) ↔ (𝜓𝜗))
 
Theoremsubbil-P3.41a-L1 331 Lemma for subbil-P3.41a 332. [Auxiliary lemma - not displayed.]
 
Theoremsubbil-P3.41a 332 Left Substitution Law for ''.
(𝛾 → (𝜑𝜓))       (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))
 
Theoremsubbil-P3.41a.RC 333 Inference Form of subbil-P3.41a 332.
(𝜑𝜓)       ((𝜑𝜒) ↔ (𝜓𝜒))
 
Theoremsubbir-P3.41b 334 Right Substitution Law for ''.
(𝛾 → (𝜑𝜓))       (𝛾 → ((𝜒𝜑) ↔ (𝜒𝜓)))
 
Theoremsubbir-P3.41b.RC 335 Inference Form of subbir-P3.41b 334.
(𝜑𝜓)       ((𝜒𝜑) ↔ (𝜒𝜓))
 
Theoremsubbid-P3.41c 336 Dual Substitution Law for ''.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜒𝜗))       (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜗)))
 
Theoremsubbid-P3.41c.RC 337 Inference Form of subbid-P3.41c 336.
(𝜑𝜓)    &   (𝜒𝜗)       ((𝜑𝜒) ↔ (𝜓𝜗))
 
Theoremsubandl-P3.42a-L1 338 Lemma for subandl-P3.42a 339. [Auxiliary lemma - not displayed.]
 
Theoremsubandl-P3.42a 339 Left Substitution Law for ''.
(𝛾 → (𝜑𝜓))       (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))
 
Theoremsubandl-P3.42a.RC 340 Inference Form of subandl-P3.42a 339.
(𝜑𝜓)       ((𝜑𝜒) ↔ (𝜓𝜒))
 
Theoremsubandr-P3.42b 341 Right Substitution Law for ''.
(𝛾 → (𝜑𝜓))       (𝛾 → ((𝜒𝜑) ↔ (𝜒𝜓)))
 
Theoremsubandr-P3.42b.RC 342 Inference Form of subandr-P3.42b 341.
(𝜑𝜓)       ((𝜒𝜑) ↔ (𝜒𝜓))
 
Theoremsubandd-P3.42c 343 Dual Substitution Law for ''.
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜒𝜗))       (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜗)))
 
Theoremsubandd-P3.42c.RC 344 Inference Form of subandd-P3.42c 343.
(𝜑𝜓)    &   (𝜒𝜗)       ((𝜑𝜒) ↔ (𝜓𝜗))
 
Theoremsuborl-P3.43a-L1 345 Lemma for suborl-P3.43a 346. [Auxiliary lemma - not displayed.]
 
Theoremsuborl-P3.43a 346 Left Substitution Theorem for '' .
(𝛾 → (𝜑𝜓))       (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))
 
Theoremsuborl-P3.43a.RC 347 Inference Form of suborl-P3.43a 346.
(𝜑𝜓)       ((𝜑𝜒) ↔ (𝜓𝜒))
 
Theoremsuborr-P3.43b 348 Right Substitution Law for '' .
(𝛾 → (𝜑𝜓))       (𝛾 → ((𝜒𝜑) ↔ (𝜒𝜓)))
 
Theoremsuborr-P3.43b.RC 349 Inference Form of suborr-P3.43b 348.
(𝜑𝜓)       ((𝜒𝜑) ↔ (𝜒𝜓))
 
Theoremsubord-P3.43c 350 Dual Substitution Theorem for '' .
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜒𝜗))       (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜗)))
 
Theoremsubord-P3.43c.RC 351 Inference Form of subord-P3.43c 350.
(𝜑𝜓)    &   (𝜒𝜗)       ((𝜑𝜒) ↔ (𝜓𝜗))
 
4.4.5  Theorems for "True" and "False" Constants.
 
Theoremtrue-P3.44 352 '' is a theorem.
 
Theoremfalse-P3.45 353 '' is refutable.
¬ ⊥
 
4.4.6  Re-deriving Chapter 2 Definitions.

In intuitionist logic, conjunction ('') and disjunction ('') are both a stronger notion than they are in the classical case. In intuitionist logic we have...

'((𝜑𝜓) → ¬ (𝜑 → ¬ 𝜓))' and '((𝜑𝜓) → (¬ 𝜑𝜓))', but not...

'(¬ (𝜑 → ¬ 𝜓) → (𝜑𝜓))' or '((¬ 𝜑𝜓) → (𝜑𝜓))'.

The biconditional relationship '(𝜑𝜓)' is also stronger in the intuitionist case as it can be writter in terms of conjunction as...

'((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))'

which can be expanded to...

'(((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑))) ∧ (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓))).

In intuitionist logic, andasimint-P3.46b 357 allows the '' symbol within the left conjunct to be replaced with the primitive Hilbert definition. The same cannot be done with the right conjunct as we would need the "sufficient condition" (or "only if") part of the Hilbert definition, which is not intuitionally valid.

 
Theoremandasim-P3.46-L1 354 Lemma for andasim-P3.46a 356 and andasimint-P3.46b 357. [Auxiliary lemma - not displayed.]
 
Theoremandasim-P3.46-L2 355 Lemma for andasim-P3.46a 356. [Auxiliary lemma - not displayed.]
 
Theoremandasim-P3.46a 356 '' in Terms of ''.

This is the re-derived Chapter 2 definition. Only andasimint-P3.46b 357 is deducible with intuitionist logic.

((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
 
Theoremandasimint-P3.46b 357 Necessary Condition for (i.e. "If" part of) '' Defined in Terms of '' and '¬'.

Only this direction is deducible with intuitionist logic.

((𝜑𝜓) → ¬ (𝜑 → ¬ 𝜓))
 
Theoremdfbi-P3.47 358 Alternate Definition of ''.

The Chapter 2 definition of '' comes immediately from combining this definition with the previous definition of ''. That definition really isn't useful enough to state though.

((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
 
Theoremorasim-P3.48-L1 359 Lemma for orasim-P3.48a 361 and orasimint-P3.48b 362. [Auxiliary lemma - not displayed.]
 
Theoremorasim-P3.48-L2 360 Lemma for orasim-P3.48a 361. [Auxiliary lemma - not displayed.]
 
Theoremorasim-P3.48a 361 '' in Terms of ''.

This is the re-derived Chapter 2 definition. Only orasimint-P3.48b 362 is deducible with intuitionist logic.

((𝜑𝜓) ↔ (¬ 𝜑𝜓))
 
Theoremorasimint-P3.48b 362 Necessary Condition for (i.e. "If" part of) '' Defined in Terms of '' and '¬'.

Only this direction is deducible with intuitionist logic.

((𝜑𝜓) → (¬ 𝜑𝜓))
 
Theoremdffalse-P3.49-L1 363 Lemma for dffalse-P3.49 365. [Auxiliary lemma - not displayed.]
 
Theoremdffalse-P3.49-L2 364 Lemma for dffalse-P3.49 365. [Auxiliary lemma - not displayed.]
 
Theoremdffalse-P3.49 365 Re-derived Chapter 2 '' definition.
(⊥ ↔ ¬ ⊤)
 
PART 5  Chapter 4: Propositional Calculus (continued)
 
5.1  More Useful Rules.
 
5.1.1  Law of Non-contradiction.
 
Theoremncontra-P4.1 366 Law of Non-contradiction.
¬ (𝜑 ∧ ¬ 𝜑)
 
5.1.2  Dual Forms of Introduction and Elimination Rules.
 
Theoremnorel-P4.2a 367 Negated Left '' Elimination.
(𝛾 → ¬ (𝜑𝜓))       (𝛾 → ¬ 𝜓)
 
Theoremnorel-P4.2a.RC 368 Inference Form of norel-P4.2a 367.
¬ (𝜑𝜓)        ¬ 𝜓
 
Theoremnorel-P4.2a.CL 369 Closed Form of norel-P4.2a 367.
(¬ (𝜑𝜓) → ¬ 𝜓)
 
Theoremnorer-P4.2b 370 Negated Right '' Elimination.
(𝛾 → ¬ (𝜑𝜓))       (𝛾 → ¬ 𝜑)
 
Theoremnorer-P4.2b.RC 371 Inference Form of norer-P4.2b 370.
¬ (𝜑𝜓)        ¬ 𝜑
 
Theoremnorer-P4.2b.CL 372 Closed Form of norer-P4.2b 370.
(¬ (𝜑𝜓) → ¬ 𝜑)
 
Theoremnandil-P4.3a 373 Negated Left '' Introduction.
(𝛾 → ¬ 𝜑)       (𝛾 → ¬ (𝜓𝜑))
 
Theoremnandil-P4.3a.RC 374 Inference Form of nandil-P4.3a 373.
¬ 𝜑        ¬ (𝜓𝜑)
 
Theoremnandir-P4.3b 375 Negated Right '' Introduction.
(𝛾 → ¬ 𝜑)       (𝛾 → ¬ (𝜑𝜓))
 
Theoremnandir-P4.3b.RC 376 Inference Form of nandir-P4.3b 375.
¬ 𝜑        ¬ (𝜑𝜓)
 
5.1.3  Other Forms of the Principle Of Explosion.
 
Theoremimpoe-P4.4a 377 Variation of Principle of Explosion Using Implication.
(𝛾 → ¬ 𝜑)       (𝛾 → (𝜑𝜓))
 
Theoremimpoe-P4.4a.RC 378 Inference Form of impoe-P4.4a 377.
¬ 𝜑       (𝜑𝜓)
 
Theoremimpoe-P4.4a.CL 379 Closed Form of impoe-P4.4a 377.
𝜑 → (𝜑𝜓))
 
Theoremnimpoe-P4.4b 380 Variation of Principle of Explosion Using Implication (negated form).
(𝛾𝜑)       (𝛾 → (¬ 𝜑𝜓))
 
Theoremnimpoe-P4.4b.RC 381 Inference Form of nimpoe-P4.4b 380.
𝜑       𝜑𝜓)
 
Theoremnimpoe-P4.4b.CL 382 Closed Form of nimpoe-P4.4b 380.
(𝜑 → (¬ 𝜑𝜓))
 
Theoremfalseimpoe-P4.4c 383 Principle of Explosion Utilising ''.
(𝛾 → ⊥)       (𝛾𝜑)
 
Theoremfalseimpoe-P4.4c.RC 384 Inference Form of falseimpoe-P4.4c 383.

In an inconsistent system, every wff is a theorem.

       𝜑
 
5.1.4  Process of Elimination.
 
Theoremprofeliml-P4.5a 385 Process of Elimination (left).
(𝛾 → (𝜑𝜓))    &   (𝛾 → ¬ 𝜑)       (𝛾𝜓)
 
Theoremprofeliml-P4.5a.RC 386 Inference Form of profeliml-P4.5a 385.
(𝜑𝜓)    &    ¬ 𝜑       𝜓
 
Theoremprofelimr-P4.5b 387 Process of Elimination (right).
(𝛾 → (𝜑𝜓))    &   (𝛾 → ¬ 𝜓)       (𝛾𝜑)
 
Theoremprofelimr-P4.5b.RC 388 Inference Form of profelimr-P4.5b 387.
(𝜑𝜓)    &    ¬ 𝜓       𝜑
 
Theoremnprofeliml-P4.6a 389 Negated Process of Elimination (left).
(𝛾 → ¬ (𝜑𝜓))    &   (𝛾𝜑)       (𝛾 → ¬ 𝜓)
 
Theoremnprofeliml-P4.6a.RC 390 Inference Form of nprofeliml-P4.6a 389.
¬ (𝜑𝜓)    &   𝜑        ¬ 𝜓
 
Theoremnprofelimr-P4.6b 391 Negated Process of Elimination (right).
(𝛾 → ¬ (𝜑𝜓))    &   (𝛾𝜓)       (𝛾 → ¬ 𝜑)
 
Theoremnprofelimr-P4.6b.RC 392 Inference Form of nprofelimr-P4.6b 391.
¬ (𝜑𝜓)    &   𝜓        ¬ 𝜑
 
Theoremfalseprofeliml-P4.7a 393 Process of Elimination Utilising '' (left).
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜑 → ⊥))       (𝛾𝜓)
 
Theoremfalseprofeliml-P4.7a.RC 394 Inference Form of falseprofeliml-P4.7a 393.
(𝜑𝜓)    &   (𝜑 → ⊥)       𝜓
 
Theoremfalseprofelimr-P4.7b 395 Process of Elimination Utilizing '' (right).
(𝛾 → (𝜑𝜓))    &   (𝛾 → (𝜓 → ⊥))       (𝛾𝜑)
 
Theoremfalseprofelimr-P4.7b.RC 396 Inference Form of falseprofelimr-P4.7b 395.
(𝜑𝜓)    &   (𝜓 → ⊥)       𝜑
 
5.1.5  Joining Implications.
 
Theoremjoinimandinc-P4.8a 397 Join Two Implications Through Conjunction (Inclusive).
(𝛾 → ((𝜑𝜓) ∧ (𝜒𝜗)))       (𝛾 → ((𝜑𝜒) → (𝜓𝜗)))
 
Theoremjoinimandinc-P4.8a.RC 398 Inference Form of joinimandinc-P4.8a 397.
((𝜑𝜓) ∧ (𝜒𝜗))       ((𝜑𝜒) → (𝜓𝜗))
 
Theoremjoinimandinc-P4.8a.CL 399 Closed Form of joinimandinc-P4.8a 397.
(((𝜑𝜓) ∧ (𝜒𝜗)) → ((𝜑𝜒) → (𝜓𝜗)))
 
Theoremjoinimandres-P4.8b 400 Join Two Implications Through Conjunction (Restrictive).
(𝛾 → ((𝜑𝜓) ∧ (𝜒𝜗)))       (𝛾 → ((𝜑𝜒) → (𝜓𝜗)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1125
  Copyright terms: Public domain < Previous  Next >