PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  andcomm-P3.35

Theorem andcomm-P3.35 314
Description: '' Commutativity.
Assertion
Ref Expression
andcomm-P3.35 ((𝜑𝜓) ↔ (𝜓𝜑))

Proof of Theorem andcomm-P3.35
StepHypRef Expression
1 andcomm-P3.35-L1 313 . 2 ((𝜑𝜓) → (𝜓𝜑))
2 andcomm-P3.35-L1 313 . 2 ((𝜓𝜑) → (𝜑𝜓))
31, 2rcp-NDBII0 239 1 ((𝜑𝜓) ↔ (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  subandr-P3.42b  341  idandtruer-P4.19b  439  biasandor-P4.34a  491  andcomm2-P4  564
  Copyright terms: Public domain W3C validator