PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  andcomm2-P4

Theorem andcomm2-P4 564
Description: Alternate Form of andcomm-P3.35 314.
Hypothesis
Ref Expression
andcomm2-P4.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
andcomm2-P4 (𝛾 → (𝜓𝜑))

Proof of Theorem andcomm2-P4
StepHypRef Expression
1 andcomm2-P4.1 . 2 (𝛾 → (𝜑𝜓))
2 andcomm-P3.35 314 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
32rcp-NDIMP0addall 207 . 2 (𝛾 → ((𝜑𝜓) ↔ (𝜓𝜑)))
41, 3bimpf-P4 531 1 (𝛾 → (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  andcomm2-P4.RC  565
  Copyright terms: Public domain W3C validator