PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  andcomm2-P4.RC

Theorem andcomm2-P4.RC 565
Description: Inference Form of andcomm2-P4 564.
Hypothesis
Ref Expression
andcomm2-P4.RC.1 (𝜑𝜓)
Assertion
Ref Expression
andcomm2-P4.RC (𝜓𝜑)

Proof of Theorem andcomm2-P4.RC
StepHypRef Expression
1 andcomm2-P4.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
32andcomm2-P4 564 . 2 (⊤ → (𝜓𝜑))
43ndtruee-P3.18 183 1 (𝜓𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-and 132  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator