PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bimpf-P4

Theorem bimpf-P4 531
Description: Modus Ponens with '' (forward).
Hypotheses
Ref Expression
bimpf-P4.1 (𝛾𝜑)
bimpf-P4.2 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
bimpf-P4 (𝛾𝜓)

Proof of Theorem bimpf-P4
StepHypRef Expression
1 bimpf-P4.1 . 2 (𝛾𝜑)
2 bimpf-P4.2 . . 3 (𝛾 → (𝜑𝜓))
32ndbief-P3.14 179 . 2 (𝛾 → (𝜑𝜓))
41, 3ndime-P3.6 171 1 (𝛾𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  bimpf-P4.RC  532  andcomm2-P4  564  orcomm2-P4  566  alloverimex-P5  601  nfrsucc-P6  780  nfradd-P6  781  nfrmult-P6  782  psubsuccv-P6-L1  805  psubaddv-P6-L1  807  psubmultv-P6-L1  809  ndsubaddd-P7  858  ndsubmultd-P7  859  eqsym-P7  936  gennfrcl-P7  963  eqtrns-P7  987  nfrsucc-P8  1119  nfradd-P8  1120  nfrmult-P8  1121
  Copyright terms: Public domain W3C validator