| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > bimpf-P4 | |||
| Description: Modus Ponens with '↔' (forward). † |
| Ref | Expression |
|---|---|
| bimpf-P4.1 | ⊢ (𝛾 → 𝜑) |
| bimpf-P4.2 | ⊢ (𝛾 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| bimpf-P4 | ⊢ (𝛾 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bimpf-P4.1 | . 2 ⊢ (𝛾 → 𝜑) | |
| 2 | bimpf-P4.2 | . . 3 ⊢ (𝛾 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ndbief-P3.14 179 | . 2 ⊢ (𝛾 → (𝜑 → 𝜓)) |
| 4 | 1, 3 | ndime-P3.6 171 | 1 ⊢ (𝛾 → 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 |
| This theorem is referenced by: bimpf-P4.RC 532 andcomm2-P4 564 orcomm2-P4 566 alloverimex-P5 601 nfrsucc-P6 780 nfradd-P6 781 nfrmult-P6 782 psubsuccv-P6-L1 805 psubaddv-P6-L1 807 psubmultv-P6-L1 809 ndsubaddd-P7 858 ndsubmultd-P7 859 eqsym-P7 936 gennfrcl-P7 963 eqtrns-P7 987 nfrsucc-P8 1119 nfradd-P8 1120 nfrmult-P8 1121 |
| Copyright terms: Public domain | W3C validator |