PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrsucc-P6

Theorem nfrsucc-P6 780
Description: If '𝑥' is ENF a term '𝑡', then '𝑥' is also ENF in its successor 's‘𝑡'.

'𝑎' is distinct from all other variables.

Hypothesis
Ref Expression
nfrsucc-P6.1 𝑥 𝑎 = 𝑡
Assertion
Ref Expression
nfrsucc-P6 𝑥 𝑎 = s‘𝑡
Distinct variable groups:   𝑡,𝑎   𝑥,𝑎

Proof of Theorem nfrsucc-P6
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 nfrv-P6 686 . . . 4 𝑥 𝑎 = s‘𝑏
21rcp-NDIMP0addall 207 . . 3 (𝑏 = 𝑡 → Ⅎ𝑥 𝑎 = s‘𝑏)
3 nfrsucc-P6.1 . . . . 5 𝑥 𝑎 = 𝑡
43nfrterm-P6 779 . . . 4 𝑥 𝑏 = 𝑡
5 ax-L9-succ 22 . . . . 5 (𝑏 = 𝑡 → s‘𝑏 = s‘𝑡)
65subeqr-P5 635 . . . 4 (𝑏 = 𝑡 → (𝑎 = s‘𝑏𝑎 = s‘𝑡))
74, 6subnfr-P6 755 . . 3 (𝑏 = 𝑡 → (Ⅎ𝑥 𝑎 = s‘𝑏 ↔ Ⅎ𝑥 𝑎 = s‘𝑡))
82, 7bimpf-P4 531 . 2 (𝑏 = 𝑡 → Ⅎ𝑥 𝑎 = s‘𝑡)
9 axL6ex-P5 625 . 2 𝑏 𝑏 = 𝑡
108, 9exiav-P5.SH 616 1 𝑥 𝑎 = s‘𝑡
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  s‘term_succ 3   = wff-equals 6  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-succ 22  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  psubsuccv-P6  806
  Copyright terms: Public domain W3C validator