PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrterm-P6

Theorem nfrterm-P6 779
Description: Changing the dummy variable doesn't change the ENF state.

'𝑎' and '𝑏' are distinct from all other variables.

Hypothesis
Ref Expression
nfrterm-P6.1 𝑥 𝑎 = 𝑡
Assertion
Ref Expression
nfrterm-P6 𝑥 𝑏 = 𝑡
Distinct variable groups:   𝑡,𝑎,𝑏   𝑥,𝑎,𝑏

Proof of Theorem nfrterm-P6
StepHypRef Expression
1 nfrterm-P6.1 . . . 4 𝑥 𝑎 = 𝑡
21ax-GEN 15 . . 3 𝑎𝑥 𝑎 = 𝑡
3 subeql-P5.CL 633 . . . . 5 (𝑎 = 𝑏 → (𝑎 = 𝑡𝑏 = 𝑡))
43subnfr-P6.VR 756 . . . 4 (𝑎 = 𝑏 → (Ⅎ𝑥 𝑎 = 𝑡 ↔ Ⅎ𝑥 𝑏 = 𝑡))
54cbvallv-P5 659 . . 3 (∀𝑎𝑥 𝑎 = 𝑡 ↔ ∀𝑏𝑥 𝑏 = 𝑡)
62, 5bimpf-P4.RC 532 . 2 𝑏𝑥 𝑏 = 𝑡
7 spec-P6 719 . 2 (∀𝑏𝑥 𝑏 = 𝑡 → Ⅎ𝑥 𝑏 = 𝑡)
86, 7rcp-NDIME0 228 1 𝑥 𝑏 = 𝑡
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  nfrsucc-P6  780  nfradd-P6  781  nfrmult-P6  782  psubsuccv-P6  806  psubaddv-P6  808  psubmultv-P6  810
  Copyright terms: Public domain W3C validator