PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subnfr-P6.VR

Theorem subnfr-P6.VR 756
Description: Variable Restricted Form of subnfr-P6 755.

'𝑥' cannot occur in '𝛾'.

Hypothesis
Ref Expression
subnfr-P6.VR.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
subnfr-P6.VR (𝛾 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓))
Distinct variable group:   𝛾,𝑥

Proof of Theorem subnfr-P6.VR
StepHypRef Expression
1 nfrv-P6 686 . 2 𝑥𝛾
2 subnfr-P6.VR.1 . 2 (𝛾 → (𝜑𝜓))
31, 2subnfr-P6 755 1 (𝛾 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  nfrterm-P6  779
  Copyright terms: Public domain W3C validator