PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrv-P6

Theorem nfrv-P6 686
Description: Does Not Occur in ENF in.

If '𝑥' does not occur in '𝜑', then '𝑥' is effectively not free in '𝜑'.

Assertion
Ref Expression
nfrv-P6 𝑥𝜑
Distinct variable group:   𝜑,𝑥

Proof of Theorem nfrv-P6
Dummy variable 𝑥₁ is distinct from all other variables.
StepHypRef Expression
1 biref-P3.33a 297 . . 3 (𝜑𝜑)
21rcp-NDIMP0addall 207 . 2 (𝑥 = 𝑥₁ → (𝜑𝜑))
3 ax-L5 17 . 2 (𝜑 → ∀𝑥𝜑)
42, 3gennfrw-P6 685 1 𝑥𝜑
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-bi 104  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  solvesub-P6a.VR  705  example-E6.01a  706  trnsvsubw-P6  710  example-E6.02a  712  subnfr-P6.VR  756  psubtoisub-P6  765  spliteq-P6  776  splitelof-P6  778  nfrsucc-P6  780  nfradd-P6  781  nfrmult-P6  782  psubnfr-P6.VR  785  psubvar1-P6  802  ndnfrv-P7.1  826
  Copyright terms: Public domain W3C validator