| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrv-P6 | |||
| Description: Does Not Occur in ⇒ ENF in.
If '𝑥' does not occur in '𝜑', then '𝑥' is effectively not free in '𝜑'. |
| Ref | Expression |
|---|---|
| nfrv-P6 | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biref-P3.33a 297 | . . 3 ⊢ (𝜑 ↔ 𝜑) | |
| 2 | 1 | rcp-NDIMP0addall 207 | . 2 ⊢ (𝑥 = 𝑥₁ → (𝜑 ↔ 𝜑)) |
| 3 | ax-L5 17 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 4 | 2, 3 | gennfrw-P6 685 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ↔ wff-bi 104 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: solvesub-P6a.VR 705 example-E6.01a 706 trnsvsubw-P6 710 example-E6.02a 712 subnfr-P6.VR 756 psubtoisub-P6 765 spliteq-P6 776 splitelof-P6 778 nfrsucc-P6 780 nfradd-P6 781 nfrmult-P6 782 psubnfr-P6.VR 785 psubvar1-P6 802 ndnfrv-P7.1 826 |
| Copyright terms: Public domain | W3C validator |