PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  biref-P3.33a

Theorem biref-P3.33a 297
Description: Equivalence Property: '' Reflexivity.
Assertion
Ref Expression
biref-P3.33a (𝜑𝜑)

Proof of Theorem biref-P3.33a
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (𝜑𝜑)
21, 1rcp-NDBII0 239 1 (𝜑𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  truthtbltbit-P4.39a  507  truthtblfbif-P4.39d  510  qremallv-P5  656  qremexv-P5  657  nfrv-P6  686  solvesub-P6a.VR  705
  Copyright terms: Public domain W3C validator