PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nmt-3.32b.CL

Theorem nmt-3.32b.CL 296
Description: Closed Form of nmt-P3.32b 294.
Assertion
Ref Expression
nmt-3.32b.CL ((¬ 𝜑𝜑) → 𝜑)

Proof of Theorem nmt-3.32b.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 ((¬ 𝜑𝜑) → (¬ 𝜑𝜑))
21nmt-P3.32b 294 1 ((¬ 𝜑𝜑) → 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator