PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nmt-P3.32b

Theorem nmt-P3.32b 294
Description: Negated Modus Tollens.

This statement is the deductive form of clav-P1.12 68. It requires the Law of Excluded Middle and is thus not deducible with intuitionist logic.

Hypothesis
Ref Expression
nmt-P3.32b.1 (𝛾 → (¬ 𝜑𝜑))
Assertion
Ref Expression
nmt-P3.32b (𝛾𝜑)

Proof of Theorem nmt-P3.32b
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . 4 ((𝛾 ∧ ¬ 𝜑) → ¬ 𝜑)
2 nmt-P3.32b.1 . . . . 5 (𝛾 → (¬ 𝜑𝜑))
32rcp-NDIMP1add1 208 . . . 4 ((𝛾 ∧ ¬ 𝜑) → (¬ 𝜑𝜑))
41, 3ndime-P3.6 171 . . 3 ((𝛾 ∧ ¬ 𝜑) → 𝜑)
54, 1rcp-NDNEGI2 219 . 2 (𝛾 → ¬ ¬ 𝜑)
65dnege-P3.30 276 1 (𝛾𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  nmt-P3.32b.RC  295  nmt-3.32b.CL  296
  Copyright terms: Public domain W3C validator