PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dnege-P3.30

Theorem dnege-P3.30 276
Description: Double Negation Elimination.

This statement is equivalent to ndexclmid-P3.16 181, thus it is not deducible with intuitionist logic.

Hypothesis
Ref Expression
dnege-P3.30.1 (𝛾 → ¬ ¬ 𝜑)
Assertion
Ref Expression
dnege-P3.30 (𝛾𝜑)

Proof of Theorem dnege-P3.30
StepHypRef Expression
1 rcp-NDASM2of2 194 . 2 ((𝛾𝜑) → 𝜑)
2 rcp-NDASM2of2 194 . . 3 ((𝛾 ∧ ¬ 𝜑) → ¬ 𝜑)
3 dnege-P3.30.1 . . . 4 (𝛾 → ¬ ¬ 𝜑)
43rcp-NDIMP1add1 208 . . 3 ((𝛾 ∧ ¬ 𝜑) → ¬ ¬ 𝜑)
52, 4ndnege-P3.4 169 . 2 ((𝛾 ∧ ¬ 𝜑) → 𝜑)
6 ndexclmid-P3.16.AC 251 . 2 (𝛾 → (𝜑 ∨ ¬ 𝜑))
71, 5, 6ndore-P3.12 177 1 (𝛾𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  dnege-P3.30.RC  277  dnege-P3.30.CL  278  trnsp-P3.31b  282  trnsp-P3.31d  288  nmt-P3.32b  294  andasim-P3.46-L2  355  dmorgbfwd-L4.3  454  raa-P4  514  rcp-RAA2  516  rcp-RAA3  517  rcp-RAA4  518  rcp-RAA5  519  falseraa-P4  520  rcp-FALSERAA2-P  522  rcp-FALSERAA3  523  rcp-FALSERAA4  524  rcp-FALSERAA5  525
  Copyright terms: Public domain W3C validator