| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > dnege-P3.30 | |||
| Description: Double Negation
Elimination.
This statement is equivalent to ndexclmid-P3.16 181, thus it is not deducible with intuitionist logic. |
| Ref | Expression |
|---|---|
| dnege-P3.30.1 | ⊢ (𝛾 → ¬ ¬ 𝜑) |
| Ref | Expression |
|---|---|
| dnege-P3.30 | ⊢ (𝛾 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of2 194 | . 2 ⊢ ((𝛾 ∧ 𝜑) → 𝜑) | |
| 2 | rcp-NDASM2of2 194 | . . 3 ⊢ ((𝛾 ∧ ¬ 𝜑) → ¬ 𝜑) | |
| 3 | dnege-P3.30.1 | . . . 4 ⊢ (𝛾 → ¬ ¬ 𝜑) | |
| 4 | 3 | rcp-NDIMP1add1 208 | . . 3 ⊢ ((𝛾 ∧ ¬ 𝜑) → ¬ ¬ 𝜑) |
| 5 | 2, 4 | ndnege-P3.4 169 | . 2 ⊢ ((𝛾 ∧ ¬ 𝜑) → 𝜑) |
| 6 | ndexclmid-P3.16.AC 251 | . 2 ⊢ (𝛾 → (𝜑 ∨ ¬ 𝜑)) | |
| 7 | 1, 5, 6 | ndore-P3.12 177 | 1 ⊢ (𝛾 → 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 |
| This theorem is referenced by: dnege-P3.30.RC 277 dnege-P3.30.CL 278 trnsp-P3.31b 282 trnsp-P3.31d 288 nmt-P3.32b 294 andasim-P3.46-L2 355 dmorgbfwd-L4.3 454 raa-P4 514 rcp-RAA2 516 rcp-RAA3 517 rcp-RAA4 518 rcp-RAA5 519 falseraa-P4 520 rcp-FALSERAA2-P 522 rcp-FALSERAA3 523 rcp-FALSERAA4 524 rcp-FALSERAA5 525 |
| Copyright terms: Public domain | W3C validator |