PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-RAA4

Theorem rcp-RAA4 518
Description: Reductio ad Absurdum.
Hypotheses
Ref Expression
rcp-RAA4.1 ((𝛾₁𝛾₂𝛾₃ ∧ ¬ 𝛾₄) → 𝜑)
rcp-RAA4.2 ((𝛾₁𝛾₂𝛾₃ ∧ ¬ 𝛾₄) → ¬ 𝜑)
Assertion
Ref Expression
rcp-RAA4 ((𝛾₁𝛾₂𝛾₃) → 𝛾₄)

Proof of Theorem rcp-RAA4
StepHypRef Expression
1 rcp-RAA4.1 . . 3 ((𝛾₁𝛾₂𝛾₃ ∧ ¬ 𝛾₄) → 𝜑)
2 rcp-RAA4.2 . . 3 ((𝛾₁𝛾₂𝛾₃ ∧ ¬ 𝛾₄) → ¬ 𝜑)
31, 2rcp-NDNEGI4 221 . 2 ((𝛾₁𝛾₂𝛾₃) → ¬ ¬ 𝛾₄)
43dnege-P3.30 276 1 ((𝛾₁𝛾₂𝛾₃) → 𝛾₄)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-rcp-AND3 160  wff-rcp-AND4 162
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND4 163
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator