PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-RAA5

Theorem rcp-RAA5 519
Description: Reductio ad Absurdum.
Hypotheses
Ref Expression
rcp-RAA5.1 ((𝛾₁𝛾₂𝛾₃𝛾₄ ∧ ¬ 𝛾₅) → 𝜑)
rcp-RAA5.2 ((𝛾₁𝛾₂𝛾₃𝛾₄ ∧ ¬ 𝛾₅) → ¬ 𝜑)
Assertion
Ref Expression
rcp-RAA5 ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝛾₅)

Proof of Theorem rcp-RAA5
StepHypRef Expression
1 rcp-RAA5.1 . . 3 ((𝛾₁𝛾₂𝛾₃𝛾₄ ∧ ¬ 𝛾₅) → 𝜑)
2 rcp-RAA5.2 . . 3 ((𝛾₁𝛾₂𝛾₃𝛾₄ ∧ ¬ 𝛾₅) → ¬ 𝜑)
31, 2rcp-NDNEGI5 222 . 2 ((𝛾₁𝛾₂𝛾₃𝛾₄) → ¬ ¬ 𝛾₅)
43dnege-P3.30 276 1 ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝛾₅)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-rcp-AND4 162  wff-rcp-AND5 164
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND5 165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator