PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  falseraa-P4

Theorem falseraa-P4 520
Description: Reductio ad Absurdum Using ''.

This rule combines falsenegi-P4.18 432 with double negative elimination, and is thus dependent on the Law of Excluded Middle.

Hypothesis
Ref Expression
falseraa-P4.1 ((𝛾 ∧ ¬ 𝜑) → ⊥)
Assertion
Ref Expression
falseraa-P4 (𝛾𝜑)

Proof of Theorem falseraa-P4
StepHypRef Expression
1 falseraa-P4.1 . . 3 ((𝛾 ∧ ¬ 𝜑) → ⊥)
21falsenegi-P4.18 432 . 2 (𝛾 → ¬ ¬ 𝜑)
32dnege-P3.30 276 1 (𝛾𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator