PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDNEGI4

Theorem rcp-NDNEGI4 221
Description: ¬ Introduction Recipe.
Hypotheses
Ref Expression
rcp-NDNEGI4.1 ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)
rcp-NDNEGI4.2 ((𝛾₁𝛾₂𝛾₃𝛾₄) → ¬ 𝜑)
Assertion
Ref Expression
rcp-NDNEGI4 ((𝛾₁𝛾₂𝛾₃) → ¬ 𝛾₄)

Proof of Theorem rcp-NDNEGI4
StepHypRef Expression
1 rcp-NDNEGI4.1 . . 3 ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)
21rcp-NDSEP4 187 . 2 (((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄) → 𝜑)
3 rcp-NDNEGI4.2 . . 3 ((𝛾₁𝛾₂𝛾₃𝛾₄) → ¬ 𝜑)
43rcp-NDSEP4 187 . 2 (((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄) → ¬ 𝜑)
52, 4ndnegi-P3.3 168 1 ((𝛾₁𝛾₂𝛾₃) → ¬ 𝛾₄)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-rcp-AND3 160  wff-rcp-AND4 162
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND4 163
This theorem is referenced by:  rcp-RAA4  518
  Copyright terms: Public domain W3C validator