| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-NDNEGI4 | |||
| Description: ¬ Introduction Recipe. † |
| Ref | Expression |
|---|---|
| rcp-NDNEGI4.1 | ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝜑) |
| rcp-NDNEGI4.2 | ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → ¬ 𝜑) |
| Ref | Expression |
|---|---|
| rcp-NDNEGI4 | ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → ¬ 𝛾₄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDNEGI4.1 | . . 3 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝜑) | |
| 2 | 1 | rcp-NDSEP4 187 | . 2 ⊢ (((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) ∧ 𝛾₄) → 𝜑) |
| 3 | rcp-NDNEGI4.2 | . . 3 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → ¬ 𝜑) | |
| 4 | 3 | rcp-NDSEP4 187 | . 2 ⊢ (((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) ∧ 𝛾₄) → ¬ 𝜑) |
| 5 | 2, 4 | ndnegi-P3.3 168 | 1 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → ¬ 𝛾₄) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-rcp-AND3 160 ∧ wff-rcp-AND4 162 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-rcp-AND4 163 |
| This theorem is referenced by: rcp-RAA4 518 |
| Copyright terms: Public domain | W3C validator |