PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDNEGI3

Theorem rcp-NDNEGI3 220
Description: ¬ Introduction Recipe.
Hypotheses
Ref Expression
rcp-NDNEGI3.1 ((𝛾₁𝛾₂𝛾₃) → 𝜑)
rcp-NDNEGI3.2 ((𝛾₁𝛾₂𝛾₃) → ¬ 𝜑)
Assertion
Ref Expression
rcp-NDNEGI3 ((𝛾₁𝛾₂) → ¬ 𝛾₃)

Proof of Theorem rcp-NDNEGI3
StepHypRef Expression
1 rcp-NDNEGI3.1 . . 3 ((𝛾₁𝛾₂𝛾₃) → 𝜑)
21rcp-NDSEP3 186 . 2 (((𝛾₁𝛾₂) ∧ 𝛾₃) → 𝜑)
3 rcp-NDNEGI3.2 . . 3 ((𝛾₁𝛾₂𝛾₃) → ¬ 𝜑)
43rcp-NDSEP3 186 . 2 (((𝛾₁𝛾₂) ∧ 𝛾₃) → ¬ 𝜑)
52, 4ndnegi-P3.3 168 1 ((𝛾₁𝛾₂) → ¬ 𝛾₃)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161
This theorem is referenced by:  ndnegi-P3.3.CL  242  trnsp-P3.31a  279  trnsp-P3.31b  282  trnsp-P3.31c  285  trnsp-P3.31d  288  rcp-RAA3  517
  Copyright terms: Public domain W3C validator