| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-NDNEGI2 | |||
| Description: ¬ Introduction Recipe. † |
| Ref | Expression |
|---|---|
| rcp-NDNEGI2.1 | ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝜑) |
| rcp-NDNEGI2.2 | ⊢ ((𝛾₁ ∧ 𝛾₂) → ¬ 𝜑) |
| Ref | Expression |
|---|---|
| rcp-NDNEGI2 | ⊢ (𝛾₁ → ¬ 𝛾₂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDNEGI2.1 | . 2 ⊢ ((𝛾₁ ∧ 𝛾₂) → 𝜑) | |
| 2 | rcp-NDNEGI2.2 | . 2 ⊢ ((𝛾₁ ∧ 𝛾₂) → ¬ 𝜑) | |
| 3 | 1, 2 | ndnegi-P3.3 168 | 1 ⊢ (𝛾₁ → ¬ 𝛾₂) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 |
| This theorem is referenced by: dnegi-P3.29 273 mt-P3.32a 291 nmt-P3.32b 294 andasim-P3.46-L1 354 andasim-P3.46-L2 355 norel-P4.2a 367 norer-P4.2b 370 nandil-P4.3a 373 nandir-P4.3b 375 nprofeliml-P4.6a 389 nprofelimr-P4.6b 391 falseprofeliml-P4.7a 393 falseprofelimr-P4.7b 395 dnegeint-P4.12 421 falsenegi-P4.18 432 imasandint-P4.33b 490 rcp-RAA2 516 |
| Copyright terms: Public domain | W3C validator |