PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDNEGI2

Theorem rcp-NDNEGI2 219
Description: ¬ Introduction Recipe.
Hypotheses
Ref Expression
rcp-NDNEGI2.1 ((𝛾₁𝛾₂) → 𝜑)
rcp-NDNEGI2.2 ((𝛾₁𝛾₂) → ¬ 𝜑)
Assertion
Ref Expression
rcp-NDNEGI2 (𝛾₁ → ¬ 𝛾₂)

Proof of Theorem rcp-NDNEGI2
StepHypRef Expression
1 rcp-NDNEGI2.1 . 2 ((𝛾₁𝛾₂) → 𝜑)
2 rcp-NDNEGI2.2 . 2 ((𝛾₁𝛾₂) → ¬ 𝜑)
31, 2ndnegi-P3.3 168 1 (𝛾₁ → ¬ 𝛾₂)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  dnegi-P3.29  273  mt-P3.32a  291  nmt-P3.32b  294  andasim-P3.46-L1  354  andasim-P3.46-L2  355  norel-P4.2a  367  norer-P4.2b  370  nandil-P4.3a  373  nandir-P4.3b  375  nprofeliml-P4.6a  389  nprofelimr-P4.6b  391  falseprofeliml-P4.7a  393  falseprofelimr-P4.7b  395  dnegeint-P4.12  421  falsenegi-P4.18  432  imasandint-P4.33b  490  rcp-RAA2  516
  Copyright terms: Public domain W3C validator