PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  falseprofeliml-P4.7a

Theorem falseprofeliml-P4.7a 393
Description: Process of Elimination Utilising '' (left).
Hypotheses
Ref Expression
falseprofeliml-P4.7a.1 (𝛾 → (𝜑𝜓))
falseprofeliml-P4.7a.2 (𝛾 → (𝜑 → ⊥))
Assertion
Ref Expression
falseprofeliml-P4.7a (𝛾𝜓)

Proof of Theorem falseprofeliml-P4.7a
StepHypRef Expression
1 falseprofeliml-P4.7a.1 . 2 (𝛾 → (𝜑𝜓))
2 rcp-NDASM2of2 194 . . . 4 ((𝛾𝜑) → 𝜑)
3 falseprofeliml-P4.7a.2 . . . . 5 (𝛾 → (𝜑 → ⊥))
43rcp-NDIMP1add1 208 . . . 4 ((𝛾𝜑) → (𝜑 → ⊥))
52, 4ndime-P3.6 171 . . 3 ((𝛾𝜑) → ⊥)
65falseimpoe-P4.4c 383 . . 3 ((𝛾𝜑) → ¬ ⊥)
75, 6rcp-NDNEGI2 219 . 2 (𝛾 → ¬ 𝜑)
81, 7profeliml-P4.5a 385 1 (𝛾𝜓)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-or 144  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by:  falseprofeliml-P4.7a.RC  394
  Copyright terms: Public domain W3C validator