PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  profeliml-P4.5a

Theorem profeliml-P4.5a 385
Description: Process of Elimination (left).
Hypotheses
Ref Expression
profeliml-P4.5a.1 (𝛾 → (𝜑𝜓))
profeliml-P4.5a.2 (𝛾 → ¬ 𝜑)
Assertion
Ref Expression
profeliml-P4.5a (𝛾𝜓)

Proof of Theorem profeliml-P4.5a
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 ((𝛾𝜑) → 𝜑)
2 profeliml-P4.5a.2 . . . 4 (𝛾 → ¬ 𝜑)
32rcp-NDIMP1add1 208 . . 3 ((𝛾𝜑) → ¬ 𝜑)
41, 3ndnege-P3.4 169 . 2 ((𝛾𝜑) → 𝜓)
5 rcp-NDASM2of2 194 . 2 ((𝛾𝜓) → 𝜓)
6 profeliml-P4.5a.1 . 2 (𝛾 → (𝜑𝜓))
74, 5, 6rcp-NDORE2 235 1 (𝛾𝜓)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145
This theorem is referenced by:  profeliml-P4.5a.RC  386  falseprofeliml-P4.7a  393  sepimorr-P4.9c  412  oroverim-P4.28-L2  466
  Copyright terms: Public domain W3C validator