PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  falseimpoe-P4.4c.RC

Theorem falseimpoe-P4.4c.RC 384
Description: Inference Form of falseimpoe-P4.4c 383.

In an inconsistent system, every wff is a theorem.

Hypothesis
Ref Expression
falseimpoe-P4.4c.RC.1
Assertion
Ref Expression
falseimpoe-P4.4c.RC 𝜑

Proof of Theorem falseimpoe-P4.4c.RC
StepHypRef Expression
1 falseimpoe-P4.4c.RC.1 . . . 4
21ndtruei-P3.17 182 . . 3 (⊤ → ⊥)
32falseimpoe-P4.4c 383 . 2 (⊤ → 𝜑)
43ndtruee-P3.18 183 1 𝜑
Colors of variables: wff objvar term class
Syntax hints:  wff-true 153  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator