| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > falseimpoe-P4.4c.RC | |||
| Description: Inference Form of falseimpoe-P4.4c 383. †
In an inconsistent system, every wff is a theorem. |
| Ref | Expression |
|---|---|
| falseimpoe-P4.4c.RC.1 | ⊢ ⊥ |
| Ref | Expression |
|---|---|
| falseimpoe-P4.4c.RC | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | falseimpoe-P4.4c.RC.1 | . . . 4 ⊢ ⊥ | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → ⊥) |
| 3 | 2 | falseimpoe-P4.4c 383 | . 2 ⊢ (⊤ → 𝜑) |
| 4 | 3 | ndtruee-P3.18 183 | 1 ⊢ 𝜑 |
| Colors of variables: wff objvar term class |
| Syntax hints: ⊤wff-true 153 ⊥wff-false 157 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-false-D2.5 158 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |