| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > falseimpoe-P4.4c | |||
| Description: Principle of Explosion Utilising '⊥'. † |
| Ref | Expression |
|---|---|
| falseimpoe-P4.4c.1 | ⊢ (𝛾 → ⊥) |
| Ref | Expression |
|---|---|
| falseimpoe-P4.4c | ⊢ (𝛾 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | falseimpoe-P4.4c.1 | . . 3 ⊢ (𝛾 → ⊥) | |
| 2 | 1 | ndfalsee-P3.20 185 | . 2 ⊢ ¬ 𝛾 |
| 3 | 2 | impoe-P4.4a.RC 378 | 1 ⊢ (𝛾 → 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ⊥wff-false 157 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-false-D2.5 158 |
| This theorem is referenced by: falseimpoe-P4.4c.RC 384 falseprofeliml-P4.7a 393 falseprofelimr-P4.7b 395 falsenegi-P4.18 432 idorfalsel-P4.20a 440 nthmeqfalse-P4.21b 443 truthtblfimt-P4.36c 497 |
| Copyright terms: Public domain | W3C validator |