PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  falseimpoe-P4.4c

Theorem falseimpoe-P4.4c 383
Description: Principle of Explosion Utilising ''.
Hypothesis
Ref Expression
falseimpoe-P4.4c.1 (𝛾 → ⊥)
Assertion
Ref Expression
falseimpoe-P4.4c (𝛾𝜑)

Proof of Theorem falseimpoe-P4.4c
StepHypRef Expression
1 falseimpoe-P4.4c.1 . . 3 (𝛾 → ⊥)
21ndfalsee-P3.20 185 . 2 ¬ 𝛾
32impoe-P4.4a.RC 378 1 (𝛾𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by:  falseimpoe-P4.4c.RC  384  falseprofeliml-P4.7a  393  falseprofelimr-P4.7b  395  falsenegi-P4.18  432  idorfalsel-P4.20a  440  nthmeqfalse-P4.21b  443  truthtblfimt-P4.36c  497
  Copyright terms: Public domain W3C validator