| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > truthtblfimt-P4.36c | |||
| Description: ( F → T ) ⇔ T. † |
| Ref | Expression |
|---|---|
| truthtblfimt-P4.36c | ⊢ ((⊥ → ⊤) ↔ ⊤) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM1of1 192 | . . 3 ⊢ (⊥ → ⊥) | |
| 2 | 1 | falseimpoe-P4.4c 383 | . 2 ⊢ (⊥ → ⊤) |
| 3 | 2 | thmeqtrue-P4.21a 442 | 1 ⊢ ((⊥ → ⊤) ↔ ⊤) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 ⊤wff-true 153 ⊥wff-false 157 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-false-D2.5 158 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |