PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  thmeqtrue-P4.21a

Theorem thmeqtrue-P4.21a 442
Description: Any Theorem is Logically Equivalent to ''.
Hypothesis
Ref Expression
thmeqtrue-P4.21a.1 𝜑
Assertion
Ref Expression
thmeqtrue-P4.21a (𝜑 ↔ ⊤)

Proof of Theorem thmeqtrue-P4.21a
StepHypRef Expression
1 true-P3.44 352 . . 3
21rcp-NDIMP0addall 207 . 2 (𝜑 → ⊤)
3 thmeqtrue-P4.21a.1 . . 3 𝜑
43ndtruei-P3.17 182 . 2 (⊤ → 𝜑)
52, 4rcp-NDBII0 239 1 (𝜑 ↔ ⊤)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  idandthml-P4.23a  446  idandthmr-P4.23b  447  truthtblnegf-P4.35b  494  truthtblfimt-P4.36c  497  truthtblfimf-P4.36d  498  truthtbltbit-P4.39a  507  truthtblfbif-P4.39d  510  solvesub-P6a  704  lemma-L6.02a  726  psubnfr-P6  784  nfrthm-P7  926
  Copyright terms: Public domain W3C validator