| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > thmeqtrue-P4.21a | |||
| Description: Any Theorem is Logically Equivalent to '⊤'. † |
| Ref | Expression |
|---|---|
| thmeqtrue-P4.21a.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| thmeqtrue-P4.21a | ⊢ (𝜑 ↔ ⊤) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | true-P3.44 352 | . . 3 ⊢ ⊤ | |
| 2 | 1 | rcp-NDIMP0addall 207 | . 2 ⊢ (𝜑 → ⊤) |
| 3 | thmeqtrue-P4.21a.1 | . . 3 ⊢ 𝜑 | |
| 4 | 3 | ndtruei-P3.17 182 | . 2 ⊢ (⊤ → 𝜑) |
| 5 | 2, 4 | rcp-NDBII0 239 | 1 ⊢ (𝜑 ↔ ⊤) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: idandthml-P4.23a 446 idandthmr-P4.23b 447 truthtblnegf-P4.35b 494 truthtblfimt-P4.36c 497 truthtblfimf-P4.36d 498 truthtbltbit-P4.39a 507 truthtblfbif-P4.39d 510 solvesub-P6a 704 lemma-L6.02a 726 psubnfr-P6 784 nfrthm-P7 926 |
| Copyright terms: Public domain | W3C validator |