| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > idandthmr-P4.23b | |||
| Description: '∧' Identity is Any Theorem (right). † |
| Ref | Expression |
|---|---|
| idandthmr-P4.23b.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| idandthmr-P4.23b | ⊢ ((𝜓 ∧ 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idandtruer-P4.19b 439 | . 2 ⊢ ((𝜓 ∧ ⊤) ↔ 𝜓) | |
| 2 | idandthmr-P4.23b.1 | . . . . . 6 ⊢ 𝜑 | |
| 3 | 2 | thmeqtrue-P4.21a 442 | . . . . 5 ⊢ (𝜑 ↔ ⊤) |
| 4 | 3 | subandr-P3.42b.RC 342 | . . . 4 ⊢ ((𝜓 ∧ 𝜑) ↔ (𝜓 ∧ ⊤)) |
| 5 | 4 | subbil-P3.41a.RC 333 | . . 3 ⊢ (((𝜓 ∧ 𝜑) ↔ 𝜓) ↔ ((𝜓 ∧ ⊤) ↔ 𝜓)) |
| 6 | 5 | rcp-NDBIER0 241 | . 2 ⊢ (((𝜓 ∧ ⊤) ↔ 𝜓) → ((𝜓 ∧ 𝜑) ↔ 𝜓)) |
| 7 | 1, 6 | rcp-NDIME0 228 | 1 ⊢ ((𝜓 ∧ 𝜑) ↔ 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ∧ wff-and 132 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |