PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  idandthmr-P4.23b

Theorem idandthmr-P4.23b 447
Description: '' Identity is Any Theorem (right).
Hypothesis
Ref Expression
idandthmr-P4.23b.1 𝜑
Assertion
Ref Expression
idandthmr-P4.23b ((𝜓𝜑) ↔ 𝜓)

Proof of Theorem idandthmr-P4.23b
StepHypRef Expression
1 idandtruer-P4.19b 439 . 2 ((𝜓 ∧ ⊤) ↔ 𝜓)
2 idandthmr-P4.23b.1 . . . . . 6 𝜑
32thmeqtrue-P4.21a 442 . . . . 5 (𝜑 ↔ ⊤)
43subandr-P3.42b.RC 342 . . . 4 ((𝜓𝜑) ↔ (𝜓 ∧ ⊤))
54subbil-P3.41a.RC 333 . . 3 (((𝜓𝜑) ↔ 𝜓) ↔ ((𝜓 ∧ ⊤) ↔ 𝜓))
65rcp-NDBIER0 241 . 2 (((𝜓 ∧ ⊤) ↔ 𝜓) → ((𝜓𝜑) ↔ 𝜓))
71, 6rcp-NDIME0 228 1 ((𝜓𝜑) ↔ 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-and 132  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator