PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  idandtruer-P4.19b

Theorem idandtruer-P4.19b 439
Description: '' Identity is '' (right).
Assertion
Ref Expression
idandtruer-P4.19b ((𝜑 ∧ ⊤) ↔ 𝜑)

Proof of Theorem idandtruer-P4.19b
StepHypRef Expression
1 idandtruel-P4.19a 438 . 2 ((⊤ ∧ 𝜑) ↔ 𝜑)
2 andcomm-P3.35 314 . . . 4 ((⊤ ∧ 𝜑) ↔ (𝜑 ∧ ⊤))
32subbil-P3.41a.RC 333 . . 3 (((⊤ ∧ 𝜑) ↔ 𝜑) ↔ ((𝜑 ∧ ⊤) ↔ 𝜑))
43rcp-NDBIEF0 240 . 2 (((⊤ ∧ 𝜑) ↔ 𝜑) → ((𝜑 ∧ ⊤) ↔ 𝜑))
51, 4rcp-NDIME0 228 1 ((𝜑 ∧ ⊤) ↔ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-and 132  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  idandthmr-P4.23b  447  truthtblfandt-P4.37c  501
  Copyright terms: Public domain W3C validator