| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > idandtruer-P4.19b | |||
| Description: '∧' Identity is '⊤' (right). † |
| Ref | Expression |
|---|---|
| idandtruer-P4.19b | ⊢ ((𝜑 ∧ ⊤) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idandtruel-P4.19a 438 | . 2 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) | |
| 2 | andcomm-P3.35 314 | . . . 4 ⊢ ((⊤ ∧ 𝜑) ↔ (𝜑 ∧ ⊤)) | |
| 3 | 2 | subbil-P3.41a.RC 333 | . . 3 ⊢ (((⊤ ∧ 𝜑) ↔ 𝜑) ↔ ((𝜑 ∧ ⊤) ↔ 𝜑)) |
| 4 | 3 | rcp-NDBIEF0 240 | . 2 ⊢ (((⊤ ∧ 𝜑) ↔ 𝜑) → ((𝜑 ∧ ⊤) ↔ 𝜑)) |
| 5 | 1, 4 | rcp-NDIME0 228 | 1 ⊢ ((𝜑 ∧ ⊤) ↔ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ∧ wff-and 132 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: idandthmr-P4.23b 447 truthtblfandt-P4.37c 501 |
| Copyright terms: Public domain | W3C validator |