| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > idandtruel-P4.19a | |||
| Description: '∧' Identity is '⊤' (left). † |
| Ref | Expression |
|---|---|
| idandtruel-P4.19a | ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of2 194 | . 2 ⊢ ((⊤ ∧ 𝜑) → 𝜑) | |
| 2 | true-P3.44 352 | . . . 4 ⊢ ⊤ | |
| 3 | 2 | rcp-NDIMP0addall 207 | . . 3 ⊢ (𝜑 → ⊤) |
| 4 | rcp-NDASM1of1 192 | . . 3 ⊢ (𝜑 → 𝜑) | |
| 5 | 3, 4 | ndandi-P3.7 172 | . 2 ⊢ (𝜑 → (⊤ ∧ 𝜑)) |
| 6 | 1, 5 | rcp-NDBII0 239 | 1 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ∧ wff-and 132 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: idandtruer-P4.19b 439 idandthml-P4.23a 446 oroverim-P4.28-L1 465 truthtbltandt-P4.37a 499 truthtbltandf-P4.37b 500 |
| Copyright terms: Public domain | W3C validator |