PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  idandtruel-P4.19a

Theorem idandtruel-P4.19a 438
Description: '' Identity is '' (left).
Assertion
Ref Expression
idandtruel-P4.19a ((⊤ ∧ 𝜑) ↔ 𝜑)

Proof of Theorem idandtruel-P4.19a
StepHypRef Expression
1 rcp-NDASM2of2 194 . 2 ((⊤ ∧ 𝜑) → 𝜑)
2 true-P3.44 352 . . . 4
32rcp-NDIMP0addall 207 . . 3 (𝜑 → ⊤)
4 rcp-NDASM1of1 192 . . 3 (𝜑𝜑)
53, 4ndandi-P3.7 172 . 2 (𝜑 → (⊤ ∧ 𝜑))
61, 5rcp-NDBII0 239 1 ((⊤ ∧ 𝜑) ↔ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-and 132  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  idandtruer-P4.19b  439  idandthml-P4.23a  446  oroverim-P4.28-L1  465  truthtbltandt-P4.37a  499  truthtbltandf-P4.37b  500
  Copyright terms: Public domain W3C validator