PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  oroverim-P4.28-L1

Theorem oroverim-P4.28-L1 465
Description: Lemma for oroverim-P4.28a 467 and oroverimint-P4.28c 470.
Assertion
Ref Expression
oroverim-P4.28-L1 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))

Proof of Theorem oroverim-P4.28-L1
StepHypRef Expression
1 trueie-P4.22a 444 . . . . . 6 ((⊤ → 𝜑) ↔ 𝜑)
21bisym-P3.33b.RC 299 . . . . 5 (𝜑 ↔ (⊤ → 𝜑))
32suborl-P3.43a.RC 347 . . . 4 ((𝜑 ∨ (𝜓𝜒)) ↔ ((⊤ → 𝜑) ∨ (𝜓𝜒)))
43rcp-NDBIEF0 240 . . 3 ((𝜑 ∨ (𝜓𝜒)) → ((⊤ → 𝜑) ∨ (𝜓𝜒)))
54joinimor-P4.8c 403 . 2 ((𝜑 ∨ (𝜓𝜒)) → ((⊤ ∧ 𝜓) → (𝜑𝜒)))
6 idandtruel-P4.19a 438 . . . 4 ((⊤ ∧ 𝜓) ↔ 𝜓)
76subiml-P3.40a.RC 326 . . 3 (((⊤ ∧ 𝜓) → (𝜑𝜒)) ↔ (𝜓 → (𝜑𝜒)))
87rcp-NDBIEF0 240 . 2 (((⊤ ∧ 𝜓) → (𝜑𝜒)) → (𝜓 → (𝜑𝜒)))
9 ndorir-P3.11.CL 246 . . . . 5 (𝜑 → (𝜑𝜒))
109idandthml-P4.23a 446 . . . 4 (((𝜑 → (𝜑𝜒)) ∧ (𝜓 → (𝜑𝜒))) ↔ (𝜓 → (𝜑𝜒)))
1110rcp-NDBIER0 241 . . 3 ((𝜓 → (𝜑𝜒)) → ((𝜑 → (𝜑𝜒)) ∧ (𝜓 → (𝜑𝜒))))
1211joinimandinc-P4.8a 397 . 2 ((𝜓 → (𝜑𝜒)) → ((𝜑𝜓) → ((𝜑𝜒) ∨ (𝜑𝜒))))
13 idempotor-P4.25b 451 . . . 4 (((𝜑𝜒) ∨ (𝜑𝜒)) ↔ (𝜑𝜒))
1413subimr-P3.40b.RC 328 . . 3 (((𝜑𝜓) → ((𝜑𝜒) ∨ (𝜑𝜒))) ↔ ((𝜑𝜓) → (𝜑𝜒)))
1514rcp-NDBIEF0 240 . 2 (((𝜑𝜓) → ((𝜑𝜒) ∨ (𝜑𝜒))) → ((𝜑𝜓) → (𝜑𝜒)))
165, 8, 12, 15tsyl-P4.15.RC 427 1 ((𝜑 ∨ (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  oroverim-P4.28a  467  oroverimint-P4.28c  470  oroverbiint-P4.28d  471
  Copyright terms: Public domain W3C validator