Proof of Theorem oroverim-P4.28-L1
| Step | Hyp | Ref
| Expression |
| 1 | | trueie-P4.22a 444 |
. . . . . 6
⊢ ((⊤ → 𝜑) ↔ 𝜑) |
| 2 | 1 | bisym-P3.33b.RC 299 |
. . . . 5
⊢ (𝜑 ↔ (⊤ → 𝜑)) |
| 3 | 2 | suborl-P3.43a.RC 347 |
. . . 4
⊢ ((𝜑 ∨ (𝜓 → 𝜒)) ↔ ((⊤ → 𝜑) ∨ (𝜓 →
𝜒))) |
| 4 | 3 | rcp-NDBIEF0 240 |
. . 3
⊢ ((𝜑 ∨ (𝜓 → 𝜒)) → ((⊤ → 𝜑) ∨ (𝜓 →
𝜒))) |
| 5 | 4 | joinimor-P4.8c 403 |
. 2
⊢ ((𝜑 ∨ (𝜓 → 𝜒)) → ((⊤ ∧ 𝜓) → (𝜑 ∨
𝜒))) |
| 6 | | idandtruel-P4.19a 438 |
. . . 4
⊢ ((⊤ ∧ 𝜓) ↔ 𝜓) |
| 7 | 6 | subiml-P3.40a.RC 326 |
. . 3
⊢ (((⊤ ∧ 𝜓) → (𝜑 ∨
𝜒)) ↔ (𝜓
→ (𝜑 ∨ 𝜒))) |
| 8 | 7 | rcp-NDBIEF0 240 |
. 2
⊢ (((⊤ ∧ 𝜓) → (𝜑 ∨
𝜒)) → (𝜓
→ (𝜑 ∨ 𝜒))) |
| 9 | | ndorir-P3.11.CL 246 |
. . . . 5
⊢ (𝜑 → (𝜑 ∨ 𝜒)) |
| 10 | 9 | idandthml-P4.23a 446 |
. . . 4
⊢ (((𝜑 → (𝜑 ∨ 𝜒)) ∧ (𝜓 →
(𝜑 ∨ 𝜒)))
↔ (𝜓 → (𝜑 ∨ 𝜒))) |
| 11 | 10 | rcp-NDBIER0 241 |
. . 3
⊢ ((𝜓 → (𝜑 ∨ 𝜒)) → ((𝜑 →
(𝜑 ∨ 𝜒))
∧ (𝜓 → (𝜑 ∨ 𝜒)))) |
| 12 | 11 | joinimandinc-P4.8a 397 |
. 2
⊢ ((𝜓 → (𝜑 ∨ 𝜒)) → ((𝜑 ∨
𝜓) → ((𝜑
∨ 𝜒) ∨ (𝜑
∨ 𝜒)))) |
| 13 | | idempotor-P4.25b 451 |
. . . 4
⊢ (((𝜑 ∨ 𝜒) ∨ (𝜑 ∨ 𝜒)) ↔
(𝜑 ∨ 𝜒)) |
| 14 | 13 | subimr-P3.40b.RC 328 |
. . 3
⊢ (((𝜑 ∨ 𝜓) →
((𝜑 ∨ 𝜒)
∨ (𝜑 ∨ 𝜒))) ↔ ((𝜑 ∨
𝜓) → (𝜑
∨ 𝜒))) |
| 15 | 14 | rcp-NDBIEF0 240 |
. 2
⊢ (((𝜑 ∨ 𝜓) →
((𝜑 ∨ 𝜒)
∨ (𝜑 ∨ 𝜒))) → ((𝜑 ∨
𝜓) → (𝜑
∨ 𝜒))) |
| 16 | 5, 8, 12, 15 | tsyl-P4.15.RC 427 |
1
⊢ ((𝜑 ∨ (𝜓 → 𝜒)) → ((𝜑 ∨
𝜓) → (𝜑
∨ 𝜒))) |