PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  suborl-P3.43a.RC

Theorem suborl-P3.43a.RC 347
Description: Inference Form of suborl-P3.43a 346.
Hypothesis
Ref Expression
suborl-P3.43a.RC.1 (𝜑𝜓)
Assertion
Ref Expression
suborl-P3.43a.RC ((𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem suborl-P3.43a.RC
StepHypRef Expression
1 suborl-P3.43a.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
32suborl-P3.43a 346 . 2 (⊤ → ((𝜑𝜒) ↔ (𝜓𝜒)))
43ndtruee-P3.18 183 1 ((𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-or 144  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  idornthml-P4.24a  448  oroverim-P4.28-L1  465  dfnfree-P7  968  dfnfreeint-P7  969
  Copyright terms: Public domain W3C validator